Harnessing nanoparticle technology for precision medicine in head and neck cancer: Targeted delivery, immunomodulation, and clinical translation

Karthikeyan Elumalai , Sivaneswari Srinivasan
{"title":"Harnessing nanoparticle technology for precision medicine in head and neck cancer: Targeted delivery, immunomodulation, and clinical translation","authors":"Karthikeyan Elumalai ,&nbsp;Sivaneswari Srinivasan","doi":"10.1016/j.ntm.2025.100075","DOIUrl":null,"url":null,"abstract":"<div><div>Head and neck cancer (HNC) remains a significant challenge in oncology due to poor drug delivery and an immunosuppressive tumour microenvironment (TME). This review focuses on the role of nanoparticles (NPs) in addressing challenges in HNC treatment, highlighting their potential to enhance efficiency and targeting. Researchers are studying different kinds of NPs, like liposomal, polymeric, dendritic, and gold nanoparticles (AuNPs), to see how they can improve drug delivery and change the tumour environment. To improve treatment results, we use specific strategies like targeting receptors, releasing substances inside cells in a controlled way, and adjusting the immune response. The review talks about how NPs focus on cancer-related fibroblasts, stop new blood vessel growth, and tackle problems in moving these treatments into real-world use. These issues include safety, toxicity, being able to produce them on a large scale, and following regulations. Finally, emerging trends, such as hybrid NPs and personalized nanomedicine, are proposed. Nanoparticle technology can greatly change how we treat head and neck cancer. It can improve how drugs are delivered, alter the environment around tumours, and tailor treatments to individual patients, which can make life better for them. This could lead to a new approach in cancer care.in cancer treatment.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100075"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano TransMed","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2790676025000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Head and neck cancer (HNC) remains a significant challenge in oncology due to poor drug delivery and an immunosuppressive tumour microenvironment (TME). This review focuses on the role of nanoparticles (NPs) in addressing challenges in HNC treatment, highlighting their potential to enhance efficiency and targeting. Researchers are studying different kinds of NPs, like liposomal, polymeric, dendritic, and gold nanoparticles (AuNPs), to see how they can improve drug delivery and change the tumour environment. To improve treatment results, we use specific strategies like targeting receptors, releasing substances inside cells in a controlled way, and adjusting the immune response. The review talks about how NPs focus on cancer-related fibroblasts, stop new blood vessel growth, and tackle problems in moving these treatments into real-world use. These issues include safety, toxicity, being able to produce them on a large scale, and following regulations. Finally, emerging trends, such as hybrid NPs and personalized nanomedicine, are proposed. Nanoparticle technology can greatly change how we treat head and neck cancer. It can improve how drugs are delivered, alter the environment around tumours, and tailor treatments to individual patients, which can make life better for them. This could lead to a new approach in cancer care.in cancer treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing nanoparticle technology for precision medicine in head and neck cancer: Targeted delivery, immunomodulation, and clinical translation Bio-nanomaterials: Promising anticancer properties and treatment strategies Harnessing silica nanoparticles grafted with ascorbic acid to alleviate oxidative stress and impaired brain activity in rats Erratum regarding previously published articles Graphene nanomaterial-based electrochemical biosensors for salivary biomarker detection: A translational approach to oral cancer diagnostics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1