Jacob B. Fine;Carson M. McGuire;Vinson O. Williams;Michael Jenkins;Hannah McDaniel;Maya Keele;Matthew Bryant;Ashok Gopalarathnam;Chris Vermillion
{"title":"Optimal Cyclic Control of a Structurally Constrained Morphing Energy-Harvesting Kite Using an Experimentally Validated Simulation Model","authors":"Jacob B. Fine;Carson M. McGuire;Vinson O. Williams;Michael Jenkins;Hannah McDaniel;Maya Keele;Matthew Bryant;Ashok Gopalarathnam;Chris Vermillion","doi":"10.1109/TCST.2024.3520438","DOIUrl":null,"url":null,"abstract":"This work presents an experimentally validated dynamic model, control trajectory optimization methodology, and representative simulation results for a morphing underwater kite. Morphing, defined as real-time modification of the kite’s geometry to either curtail structural loading or enhance power generation, is motivated by the fact that the optimal design of an energy-harvesting kite is highly sensitive to flow speed and tether length, particularly in the presence of structural limitations that render load curtailment necessary at high flow speeds and short tether lengths. To achieve morphing behavior, an inboard Fowler flap (capable of modifying the chord and camber of an inboard wing section) was employed in tandem with a symmetric aileron bias, enabling simultaneous control over both the wing’s overall lift coefficient and center of lift without requiring the mechanical complexity associated with span morphing. The effects of these morphing parameters were integrated into an existing dynamic simulation framework, and experiments were conducted using a customized scaled tow testing setup to refine and experimentally validate the simulation model. Following the refinement of this model, a morphing trajectory optimizer was designed to optimize the morphing input trajectories over a spooling cycle using flow data from the previous cycle. Finally, using the refined simulation model and multicycle controller, simulations of large-scale kites operating in a realistic flow environment were conducted. In these simulations, a kite capable of morphing was shown to generate between 8.1% and 25.3% more energy than non-morphing kite designs.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"744-759"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10835114/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents an experimentally validated dynamic model, control trajectory optimization methodology, and representative simulation results for a morphing underwater kite. Morphing, defined as real-time modification of the kite’s geometry to either curtail structural loading or enhance power generation, is motivated by the fact that the optimal design of an energy-harvesting kite is highly sensitive to flow speed and tether length, particularly in the presence of structural limitations that render load curtailment necessary at high flow speeds and short tether lengths. To achieve morphing behavior, an inboard Fowler flap (capable of modifying the chord and camber of an inboard wing section) was employed in tandem with a symmetric aileron bias, enabling simultaneous control over both the wing’s overall lift coefficient and center of lift without requiring the mechanical complexity associated with span morphing. The effects of these morphing parameters were integrated into an existing dynamic simulation framework, and experiments were conducted using a customized scaled tow testing setup to refine and experimentally validate the simulation model. Following the refinement of this model, a morphing trajectory optimizer was designed to optimize the morphing input trajectories over a spooling cycle using flow data from the previous cycle. Finally, using the refined simulation model and multicycle controller, simulations of large-scale kites operating in a realistic flow environment were conducted. In these simulations, a kite capable of morphing was shown to generate between 8.1% and 25.3% more energy than non-morphing kite designs.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.