A fully coupled viscoelastic continuum damage model for asphalt concrete

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Materials and Structures Pub Date : 2025-02-25 DOI:10.1617/s11527-025-02597-x
Valappol Navjot, S. P. Atul Narayan
{"title":"A fully coupled viscoelastic continuum damage model for asphalt concrete","authors":"Valappol Navjot,&nbsp;S. P. Atul Narayan","doi":"10.1617/s11527-025-02597-x","DOIUrl":null,"url":null,"abstract":"<div><p>Capturing the fatigue-induced evolution of viscoelastic properties of the material is crucial for predicting the fatigue life of asphalt concrete pavements. Current prediction models are often regression-based and lack accuracy, necessitating the adoption of mechanistic models like the Viscoelastic-Continuum Damage (VECD) models. The VECD models often rely on Schapery’s work potential theory and elastic-viscoelastic correspondence principles, using pseudo-strain to separate viscoelasticity from damage mechanics. However, this decoupling imposes constraints on how viscoelastic properties can evolve. This study presents a new VECD model that fully couples the viscoelasticity of the material with its damage characteristics. It was developed within a Helmholtz-potential-based thermodynamic framework, ensuring consistency with the laws of thermodynamics. The model could describe the evolution of both the apparent storage modulus and loss modulus during fatigue tests over a wide range of strain levels. It captures the three-stage fatigue behavior of asphalt concrete, allows for unconstrained variations in the apparent phase angle, and provides a clear point of failure. Moreover, it can capture the variation of fatigue life with the applied strain level in a manner similar to the Asphalt Institute fatigue life model.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02597-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Capturing the fatigue-induced evolution of viscoelastic properties of the material is crucial for predicting the fatigue life of asphalt concrete pavements. Current prediction models are often regression-based and lack accuracy, necessitating the adoption of mechanistic models like the Viscoelastic-Continuum Damage (VECD) models. The VECD models often rely on Schapery’s work potential theory and elastic-viscoelastic correspondence principles, using pseudo-strain to separate viscoelasticity from damage mechanics. However, this decoupling imposes constraints on how viscoelastic properties can evolve. This study presents a new VECD model that fully couples the viscoelasticity of the material with its damage characteristics. It was developed within a Helmholtz-potential-based thermodynamic framework, ensuring consistency with the laws of thermodynamics. The model could describe the evolution of both the apparent storage modulus and loss modulus during fatigue tests over a wide range of strain levels. It captures the three-stage fatigue behavior of asphalt concrete, allows for unconstrained variations in the apparent phase angle, and provides a clear point of failure. Moreover, it can capture the variation of fatigue life with the applied strain level in a manner similar to the Asphalt Institute fatigue life model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
完全耦合的沥青混凝土粘弹性连续损伤模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing.
IF 14.7 1区 综合性期刊Nature CommunicationsPub Date : 2023-01-13 DOI: 10.1038/s41467-023-35886-6
Jianli Tao, Daniel E Bauer, Roberto Chiarle
CRISPR-ERA: A Webserver for Guide RNA Design of Gene Editing and Regulation.
IF 0 Methods in molecular biologyPub Date : 2021-01-01 DOI: 10.1007/978-1-0716-0822-7_5
Honglei Liu, Xiaowo Wang
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
期刊最新文献
Research on the shear multiaxial performance and meso-mechanical mechanism of concrete Investigation on performance of basalt fiber-reinforced concrete under fatigue load Fibre-based composite materials for the seismic strengthening of masonry ring beams: cyclic tests on full-scale samples Evaluation of the degradation of gypsum subjected to natural aging Study on variable order fractional creep model and creep damage of asphalt mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1