CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left-Right Patterning in Xenopus tropicalis

IF 2.4 4区 生物学 Q2 DEVELOPMENTAL BIOLOGY genesis Pub Date : 2025-02-26 DOI:10.1002/dvg.70009
Valentyna Kostiuk, Rakib Kabir, Rashid Akbari, Amy Rushing, Delfina P. González, Angelina Kim, Ashley Kim, David Zenisek, Mustafa K. Khokha
{"title":"CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left-Right Patterning in Xenopus tropicalis","authors":"Valentyna Kostiuk,&nbsp;Rakib Kabir,&nbsp;Rashid Akbari,&nbsp;Amy Rushing,&nbsp;Delfina P. González,&nbsp;Angelina Kim,&nbsp;Ashley Kim,&nbsp;David Zenisek,&nbsp;Mustafa K. Khokha","doi":"10.1002/dvg.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Heterotaxy (HTX) is characterized by an abnormality in the organ arrangement along the Left-Right (LR) axis and is caused by the disruption of LR patterning in early development. LR asymmetry is critical for multiple organs. Specifically, proper LR patterning is crucial for cardiac function and is a cause of congenital heart disease (CHD). <i>CACNA1G</i> is a candidate gene identified in patients with CHD and HTX. This gene encodes a T-type, low-voltage-activated calcium channel and is a member of the Cav3.1 channel family. However, its function in cardiac or embryonic development remains unknown. Here, we show that abnormal <i>cacna1g</i> expression in <i>Xenopus tropicalis</i> recapitulates the HTX phenotype found in the patient cohort. By examining early LR patterning markers, including <i>pitx2c</i> and <i>dand5</i>, we discovered that both markers are expressed abnormally, suggesting that LR patterning is disrupted at the earliest stages of the LR signaling cascade. Since cilia have been described as key regulators of LR asymmetry, we checked the process of cilia formation in <i>cacna1g</i> crispants. The LR Organizer (LRO) contained reduced cilia quantity in the <i>cacna1g</i> crispants, which may explain the LR defects. In conclusion, the abnormal expression of <i>cacna1g</i> affects cilia in the LRO, leading to abnormal LR patterning and cardiac looping.</p>\n </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"63 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.70009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterotaxy (HTX) is characterized by an abnormality in the organ arrangement along the Left-Right (LR) axis and is caused by the disruption of LR patterning in early development. LR asymmetry is critical for multiple organs. Specifically, proper LR patterning is crucial for cardiac function and is a cause of congenital heart disease (CHD). CACNA1G is a candidate gene identified in patients with CHD and HTX. This gene encodes a T-type, low-voltage-activated calcium channel and is a member of the Cav3.1 channel family. However, its function in cardiac or embryonic development remains unknown. Here, we show that abnormal cacna1g expression in Xenopus tropicalis recapitulates the HTX phenotype found in the patient cohort. By examining early LR patterning markers, including pitx2c and dand5, we discovered that both markers are expressed abnormally, suggesting that LR patterning is disrupted at the earliest stages of the LR signaling cascade. Since cilia have been described as key regulators of LR asymmetry, we checked the process of cilia formation in cacna1g crispants. The LR Organizer (LRO) contained reduced cilia quantity in the cacna1g crispants, which may explain the LR defects. In conclusion, the abnormal expression of cacna1g affects cilia in the LRO, leading to abnormal LR patterning and cardiac looping.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
genesis
genesis 生物-发育生物学
CiteScore
3.60
自引率
0.00%
发文量
40
审稿时长
6-12 weeks
期刊介绍: As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders. genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.
期刊最新文献
Meet Our Editorial Board—Genesis: An Interview With Eric Bellefroid, University Libre de Bruxelles, Bruxelles, Belgium CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left-Right Patterning in Xenopus tropicalis Meet Our Editorial Board—Genesis. An Interview With Jun (Kelly) Liu, Cornell University, New York, USA Meet Our Editorial Board—Genesis. An Interview With, Mark Lewandoski, National Cancer Institute, Maryland, USA Unraveling the Mechanisms That Regulate Osteoclast Differentiation: A Review of Current Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1