Living Coral Displays, Research Laboratories, and Biobanks as Important Reservoirs of Chemodiversity with Potential for Biodiscovery.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL Marine Drugs Pub Date : 2025-02-19 DOI:10.3390/md23020089
Ricardo Calado, Miguel C Leal, Ruben X G Silva, Mara Borba, António Ferro, Mariana Almeida, Diana Madeira, Helena Vieira
{"title":"Living Coral Displays, Research Laboratories, and Biobanks as Important Reservoirs of Chemodiversity with Potential for Biodiscovery.","authors":"Ricardo Calado, Miguel C Leal, Ruben X G Silva, Mara Borba, António Ferro, Mariana Almeida, Diana Madeira, Helena Vieira","doi":"10.3390/md23020089","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last decades, bioprospecting of tropical corals has revealed numerous bioactive compounds with potential for biotechnological applications. However, this search involves sampling in natural reefs, and this is currently hampered by multiple ethical and technological constraints. Living coral displays, research laboratories, and biobanks currently offer an opportunity to continue to unravel coral chemodiversity, acting as \"Noah's Arks\" that may continue to support the bioprospecting of molecules of interest. This issue is even more relevant if one considers that tropical coral reefs currently face unprecedent threats and irreversible losses that may impair the biodiscovery of molecules with potential for new products, processes, and services. Living coral displays provide controlled environments for studying corals and producing both known and new metabolites under varied conditions, and they are not prone to common bottlenecks associated with bioprospecting in natural coral reefs, such as loss of the source and replicability. Research laboratories may focus on a particular coral species or bioactive compound using corals that were cultured <i>ex situ</i>, although they may differ from wild conspecifics in metabolite production both in quantitative and qualitative terms. Biobanks collect and preserve coral specimens, tissues, cells, and/or information (e.g., genes, associated microorganisms), which offers a plethora of data to support the study of bioactive compounds' mode of action without having to cope with issues related to access, standardization, and regulatory compliance. Bioprospecting in these settings faces several challenges and opportunities. On one hand, it is difficult to ensure the complexity of highly biodiverse ecosystems that shape the production and chemodiversity of corals. On the other hand, it is possible to maximize biomass production and fine tune the synthesis of metabolites of interest under highly controlled environments. Collaborative efforts are needed to overcome barriers and foster opportunities to fully harness the chemodiversity of tropical corals before in-depth knowledge of this pool of metabolites is irreversibly lost due to tropical coral reefs' degradation.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857471/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23020089","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last decades, bioprospecting of tropical corals has revealed numerous bioactive compounds with potential for biotechnological applications. However, this search involves sampling in natural reefs, and this is currently hampered by multiple ethical and technological constraints. Living coral displays, research laboratories, and biobanks currently offer an opportunity to continue to unravel coral chemodiversity, acting as "Noah's Arks" that may continue to support the bioprospecting of molecules of interest. This issue is even more relevant if one considers that tropical coral reefs currently face unprecedent threats and irreversible losses that may impair the biodiscovery of molecules with potential for new products, processes, and services. Living coral displays provide controlled environments for studying corals and producing both known and new metabolites under varied conditions, and they are not prone to common bottlenecks associated with bioprospecting in natural coral reefs, such as loss of the source and replicability. Research laboratories may focus on a particular coral species or bioactive compound using corals that were cultured ex situ, although they may differ from wild conspecifics in metabolite production both in quantitative and qualitative terms. Biobanks collect and preserve coral specimens, tissues, cells, and/or information (e.g., genes, associated microorganisms), which offers a plethora of data to support the study of bioactive compounds' mode of action without having to cope with issues related to access, standardization, and regulatory compliance. Bioprospecting in these settings faces several challenges and opportunities. On one hand, it is difficult to ensure the complexity of highly biodiverse ecosystems that shape the production and chemodiversity of corals. On the other hand, it is possible to maximize biomass production and fine tune the synthesis of metabolites of interest under highly controlled environments. Collaborative efforts are needed to overcome barriers and foster opportunities to fully harness the chemodiversity of tropical corals before in-depth knowledge of this pool of metabolites is irreversibly lost due to tropical coral reefs' degradation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
期刊最新文献
Enzymatic Preparation of Carrageenan Oligosaccharides and Evaluation of the Effects on Growth Performance, Serum Biochemical Parameters and Non-Specific Immunity of Crucian carp. Living Coral Displays, Research Laboratories, and Biobanks as Important Reservoirs of Chemodiversity with Potential for Biodiscovery. Discovery of MK8383s with Antifungal Activity from Mangrove Endophytic Fungi Medicopsis sp. SCSIO 40440 Against Fusarium Wilt of Banana. Marine Phytoplankton Bioactive Lipids and Their Perspectives in Clinical Inflammation. Statins Diversity Revealed by the Deep-Sea-Derived Fungus Penicillium viridicatum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1