Wenke Zhang , Wanfa Wang , Sen Xu , Qingqing Sun , Wenhong Shi , Jiayi Man , Shengde Yu , Yujing Yang , Wenxin Wu , Xia Hu , Qixin Wu , Pan Wu , Si-Liang Li
{"title":"Effectively mitigated eutrophication risk by strong biological carbon pump (BCP) effect in karst reservoirs","authors":"Wenke Zhang , Wanfa Wang , Sen Xu , Qingqing Sun , Wenhong Shi , Jiayi Man , Shengde Yu , Yujing Yang , Wenxin Wu , Xia Hu , Qixin Wu , Pan Wu , Si-Liang Li","doi":"10.1016/j.watres.2025.123395","DOIUrl":null,"url":null,"abstract":"<div><div>Karst reservoirs can significantly enhance the effect of biological carbon pump (BCP), a crucial process for carbon sequestration, water purification, and eutrophication mitigation. However, the effects of BCP on the fate of carbon (C), nitrogen (N), and phosphorus (P) and its role in regulating eutrophication within river-reservoir systems, remains insufficiently understood, particularly across different geological settings. We investigated the Hongfeng Reservoir (HFR), a typical karst reservoir, analyzing water chemistry, nutrient concentrations, and stable isotopes of dissolved inorganic carbon (δ<sup>13</sup>C<sub>DIC</sub>) and nitrate (δ<sup>15</sup>N-NO<sub>3</sub><sup>-</sup>) to uncover the underlying mechanisms governing the migration of biogenic elements and the process of eutrophication. Our findings reveal a strong BCP effect in the reservoirs that leads to substantial CO<sub>2</sub> and HCO<sub>3</sub><sup>-</sup> uptake via phytoplankton photosynthesis during the warm-wet season, resulting in decreased dissolved inorganic carbon (DIC) concentrations and increased pH in the epilimnion. The δ<sup>13</sup>C<sub>DIC</sub> (−4.0 ± 0.5 ‰) values in the epilimnion relatively increased in response to phytoplankton photosynthesis that preferentially absorbs the lighter isotope of <sup>12</sup>C. Compared with the inflow, the δ<sup>15</sup>N-NO<sub>3</sub><sup>-</sup> (7.4 ± 0.2 ‰) in the epilimnion of the reservoir is significantly depleted, with the water predominantly aerobic or oxygen-supersaturated. This suggests that nitrification is the dominant process during the warm-wet season. The high NO<sub>3</sub><sup>-</sup> concentrations (44.3 ± 10.1 μmol/L) indicate a sufficient N supply for biological uptake. The strong BCP effects in the epilimnion convert substantial amounts of DCO<sub>2</sub> and nutrients into autochthonous organic matter. The resulting increase in pH further reduces the availability of DCO<sub>2</sub>. Furthermore, BCP-induced calcium carbonate precipitation enhances P removal through co-precipitation, thereby accelerating nutrient depletion and carbon sequestration, which collectively contribute to the mitigation of eutrophication risks. To assess the broader applicability of these findings, we analyzed data from 129 lakes and reservoirs globally. Our results show that karst reservoirs, with their strong BCP effect, exhibit an average Carlson trophic status index (CTSI) 9.8 % lower than non-karst reservoirs, indicating a reduced risk of eutrophication. These insights offer valuable implications for the management of water resources in karstic reservoirs globally.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"278 ","pages":"Article 123395"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425003082","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Karst reservoirs can significantly enhance the effect of biological carbon pump (BCP), a crucial process for carbon sequestration, water purification, and eutrophication mitigation. However, the effects of BCP on the fate of carbon (C), nitrogen (N), and phosphorus (P) and its role in regulating eutrophication within river-reservoir systems, remains insufficiently understood, particularly across different geological settings. We investigated the Hongfeng Reservoir (HFR), a typical karst reservoir, analyzing water chemistry, nutrient concentrations, and stable isotopes of dissolved inorganic carbon (δ13CDIC) and nitrate (δ15N-NO3-) to uncover the underlying mechanisms governing the migration of biogenic elements and the process of eutrophication. Our findings reveal a strong BCP effect in the reservoirs that leads to substantial CO2 and HCO3- uptake via phytoplankton photosynthesis during the warm-wet season, resulting in decreased dissolved inorganic carbon (DIC) concentrations and increased pH in the epilimnion. The δ13CDIC (−4.0 ± 0.5 ‰) values in the epilimnion relatively increased in response to phytoplankton photosynthesis that preferentially absorbs the lighter isotope of 12C. Compared with the inflow, the δ15N-NO3- (7.4 ± 0.2 ‰) in the epilimnion of the reservoir is significantly depleted, with the water predominantly aerobic or oxygen-supersaturated. This suggests that nitrification is the dominant process during the warm-wet season. The high NO3- concentrations (44.3 ± 10.1 μmol/L) indicate a sufficient N supply for biological uptake. The strong BCP effects in the epilimnion convert substantial amounts of DCO2 and nutrients into autochthonous organic matter. The resulting increase in pH further reduces the availability of DCO2. Furthermore, BCP-induced calcium carbonate precipitation enhances P removal through co-precipitation, thereby accelerating nutrient depletion and carbon sequestration, which collectively contribute to the mitigation of eutrophication risks. To assess the broader applicability of these findings, we analyzed data from 129 lakes and reservoirs globally. Our results show that karst reservoirs, with their strong BCP effect, exhibit an average Carlson trophic status index (CTSI) 9.8 % lower than non-karst reservoirs, indicating a reduced risk of eutrophication. These insights offer valuable implications for the management of water resources in karstic reservoirs globally.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.