Walter Cistjakov, Johanna Hoppe, Jinkwan Jung, Fridolin Röder, Hee-Tak Kim, Ulrike Krewer
{"title":"Insight into the Impact of Electrolyte on Passivation of Lithium–Sulfur Cathodes","authors":"Walter Cistjakov, Johanna Hoppe, Jinkwan Jung, Fridolin Röder, Hee-Tak Kim, Ulrike Krewer","doi":"10.1002/admi.202400632","DOIUrl":null,"url":null,"abstract":"<p>One of the remaining challenges for lithium–sulfur batteries toward practical application is early cathode passivation by the insulating discharge product: Li<sub>2</sub>S. To understand how to best mitigate passivation and minimize related performance loss, a kinetic Monte–Carlo model for Li<sub>2</sub>S crystal growth from solution is developed. The key mechanisms behind the strongly different natures of Li<sub>2</sub>S layer growth, structure, and morphology for salts with different (DN) are revealed. LiTFSI electrolyte in dimethyl ether leads to lateral Li<sub>2</sub>S growth on carbon and fast passivation because it increases the Li<sub>2</sub>S precipitation-to-dissolution probability on carbon relative to Li<sub>2</sub>S. In contrast, LiBr electrolyte has a higher DN and yields a particle-like structure due to a significantly higher precipitation-to-dissolution probability on Li<sub>2</sub>S compared to carbon. The resulting large number of Li<sub>2</sub>S sites further favors particle growth, leading to low passivation. This study is able to identify the key parameters of the electrolyte and substrate material to tune Li<sub>2</sub>S morphology and growth to pave the way for optimized performance.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400632","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400632","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the remaining challenges for lithium–sulfur batteries toward practical application is early cathode passivation by the insulating discharge product: Li2S. To understand how to best mitigate passivation and minimize related performance loss, a kinetic Monte–Carlo model for Li2S crystal growth from solution is developed. The key mechanisms behind the strongly different natures of Li2S layer growth, structure, and morphology for salts with different (DN) are revealed. LiTFSI electrolyte in dimethyl ether leads to lateral Li2S growth on carbon and fast passivation because it increases the Li2S precipitation-to-dissolution probability on carbon relative to Li2S. In contrast, LiBr electrolyte has a higher DN and yields a particle-like structure due to a significantly higher precipitation-to-dissolution probability on Li2S compared to carbon. The resulting large number of Li2S sites further favors particle growth, leading to low passivation. This study is able to identify the key parameters of the electrolyte and substrate material to tune Li2S morphology and growth to pave the way for optimized performance.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.