Müslüm Kaplan, Emre Alp, Beate Krause, Regine Boldt, Petra Pötschke
{"title":"Synthesis of Semiconductor Zinc Sulfide Nanospheres for Improving Piezoresistive Sensing Behavior of Melt-Mixed Poly(vinylidene fluoride)/Carbon Nanotube Composites","authors":"Müslüm Kaplan, Emre Alp, Beate Krause, Regine Boldt, Petra Pötschke","doi":"10.1002/admi.202400633","DOIUrl":null,"url":null,"abstract":"<p>Studies have increasingly aimed at improving the piezoresistive behavior of polymer-based conductive composites (CPCs) for strain-sensing, with inorganic nanomaterial enhancement offering research opportunities. This study investigates the impact of incorporating zinc sulfide nanospheres (ZnS NSs, 1–7 wt.%), synthesized via a one-step hydrothermal method, into a poly(vinylidene fluoride) (PVDF) polymer matrix together with multi-walled carbon nanotubes (MWCNTs). Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses reveal that ZnS NSs comprise a mixture of ZnS<sub>0.96</sub>O<sub>0.04</sub> and S phases. While of ZnS NSs minimally impact tensile properties of the PVDF/MWCNT composites, they reduce elongation at break at 5 wt.%. During 15-cycle strain sensing up to 3% strain, ZnS NSs-enhanced composites outperformed PVDF/1 wt.% MWCNT. The reference sample's resistance change ratio (ΔR/R0) decreased below 1% with increased cycles, while 1 wt.% ZnS NSs increased ΔR/R0 to 3%, reducing changes upon cycle increments. Higher ZnS NSs levels (3–7 wt.%) resulted in ΔR/R0 exceeding 4–5%, indicating enhanced strain sensing performance. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) showed limited impact of ZnS NSs on the thermal properties and microstructure of the composites.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400633","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400633","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Studies have increasingly aimed at improving the piezoresistive behavior of polymer-based conductive composites (CPCs) for strain-sensing, with inorganic nanomaterial enhancement offering research opportunities. This study investigates the impact of incorporating zinc sulfide nanospheres (ZnS NSs, 1–7 wt.%), synthesized via a one-step hydrothermal method, into a poly(vinylidene fluoride) (PVDF) polymer matrix together with multi-walled carbon nanotubes (MWCNTs). Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses reveal that ZnS NSs comprise a mixture of ZnS0.96O0.04 and S phases. While of ZnS NSs minimally impact tensile properties of the PVDF/MWCNT composites, they reduce elongation at break at 5 wt.%. During 15-cycle strain sensing up to 3% strain, ZnS NSs-enhanced composites outperformed PVDF/1 wt.% MWCNT. The reference sample's resistance change ratio (ΔR/R0) decreased below 1% with increased cycles, while 1 wt.% ZnS NSs increased ΔR/R0 to 3%, reducing changes upon cycle increments. Higher ZnS NSs levels (3–7 wt.%) resulted in ΔR/R0 exceeding 4–5%, indicating enhanced strain sensing performance. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) showed limited impact of ZnS NSs on the thermal properties and microstructure of the composites.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.