Advanced DNA–Gold Biointerface for PCR-Free Molecular Detection of Leishmania infantum

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Interfaces Pub Date : 2024-11-07 DOI:10.1002/admi.202400642
Paolo Calorenni, Giovanni Bella, Marco Sebastiano Nicolò, Emanuele Luigi Sciuto, Maria Vittoria Balli, Giovanni Valenti, Tommaso Gritti, Stefania Varani, Luca Prodi, Sabrina Conoci
{"title":"Advanced DNA–Gold Biointerface for PCR-Free Molecular Detection of Leishmania infantum","authors":"Paolo Calorenni,&nbsp;Giovanni Bella,&nbsp;Marco Sebastiano Nicolò,&nbsp;Emanuele Luigi Sciuto,&nbsp;Maria Vittoria Balli,&nbsp;Giovanni Valenti,&nbsp;Tommaso Gritti,&nbsp;Stefania Varani,&nbsp;Luca Prodi,&nbsp;Sabrina Conoci","doi":"10.1002/admi.202400642","DOIUrl":null,"url":null,"abstract":"<p>PCR-free approaches are the most promising technologies for molecular point-of-care (PoC). In this context, the detection of not amplified genetic targets through electro-optical transduction is successfully investigated. While PCR-free approaches are widely studied, there are only a few studies investigating the factors that modulate both the kinetics and the effectiveness of target capture. Among these, the probes grafting density and the isoelectric properties of the biointerface are crucial since they conditionate the charge field around biomolecules during and after the target recognition. In this work, an experimental and theoretical study of a gold biointerface functionalized with oligonucleotide probes is presented for the direct detection by cooperative hybridization of the kinetoplast (k)DNA of <i>Leishmania infantum</i>(LI). The biointerface is characterized by surface free energy (SFE) analysis and contact angle (CA) to investigate the grafting of probes and the surface isoelectric properties upon the duplex formation with the genetic target. Experimental data are compared with a theoretical model, based on the prediction of adsorption energies, which effectively reflects the charge profile of the functionalized surface. Lastly, the biointerface is characterized by electrochemical impedance spectroscopy (EIS) and the sensing performances assess in the frame of its suitability for PoC applications.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400642","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400642","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

PCR-free approaches are the most promising technologies for molecular point-of-care (PoC). In this context, the detection of not amplified genetic targets through electro-optical transduction is successfully investigated. While PCR-free approaches are widely studied, there are only a few studies investigating the factors that modulate both the kinetics and the effectiveness of target capture. Among these, the probes grafting density and the isoelectric properties of the biointerface are crucial since they conditionate the charge field around biomolecules during and after the target recognition. In this work, an experimental and theoretical study of a gold biointerface functionalized with oligonucleotide probes is presented for the direct detection by cooperative hybridization of the kinetoplast (k)DNA of Leishmania infantum(LI). The biointerface is characterized by surface free energy (SFE) analysis and contact angle (CA) to investigate the grafting of probes and the surface isoelectric properties upon the duplex formation with the genetic target. Experimental data are compared with a theoretical model, based on the prediction of adsorption energies, which effectively reflects the charge profile of the functionalized surface. Lastly, the biointerface is characterized by electrochemical impedance spectroscopy (EIS) and the sensing performances assess in the frame of its suitability for PoC applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
期刊最新文献
Issue Information Polarity-selective Transfer of Lipophilic Cargoes From Lipid Droplets (Oleosomes) to Lipid Bilayers (Adv. Mater. Interfaces 5/2025) In Situ X-Ray Photoelectron Spectroscopy Study of Atomic Layer Deposited Cerium Oxide on SiO2: Substrate Influence on the Reaction Mechanism During the Early Stages of Growth (Adv. Mater. Interfaces 5/2025) Issue Information Probing the Wannier function of Crystalline Solids with Angle-Resolved Photoemission Spectroscopy (Adv. Mater. Interfaces 4/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1