Transport of Hydrogen Through Anion Exchange Membranes in Water Electrolysis

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Interfaces Pub Date : 2024-12-19 DOI:10.1002/admi.202400515
Andre Klinger, Oscar Strobl, Hannes Michaels, Michael Kress, Nemanja Martic, Anna Maltenberger, Benjamin Britton, Andrew Belletti, Rüdiger-A. Eichel, Guenter Schmid
{"title":"Transport of Hydrogen Through Anion Exchange Membranes in Water Electrolysis","authors":"Andre Klinger,&nbsp;Oscar Strobl,&nbsp;Hannes Michaels,&nbsp;Michael Kress,&nbsp;Nemanja Martic,&nbsp;Anna Maltenberger,&nbsp;Benjamin Britton,&nbsp;Andrew Belletti,&nbsp;Rüdiger-A. Eichel,&nbsp;Guenter Schmid","doi":"10.1002/admi.202400515","DOIUrl":null,"url":null,"abstract":"<p>The transport of hydrogen through an anion-exchange membrane (AEM) is analyzed by <i>in</i>-<i>line</i> product gas analysis in a large dynamic range (0.1–2 <i>Acm</i><sup>−2</sup>) at ambient pressure and correlated to <i>ex</i> <i>situ</i> membrane properties, including volumetric electrolyte uptake, dimensional swelling and diffusivities. A commercial AF3-HWK9-75-X membrane from Ionomr Innovations Inc. is characterized and employed in a 25 <i>cm</i><sup>2</sup> electrolyzer cell, which is operated for 56 <i>h</i> at 60 °<i>C</i> in 1 <i>M</i> KOH solution. A model of the membrane is developed, based on a combination of existing theoretical knowledge regarding liquid electrolytes and measured properties of the membrane. The model is employed to quantify the transport parameters through the membrane and the porous electrode. The hydrogen transport through the membrane is 770 times slower than through the electrode. The anion-exchange membrane permits a low degree of gas crossover, with a hydrogen-in-oxygen concentration of <span></span><math>\n <semantics>\n <mrow>\n <mn>0.37</mn>\n <mspace></mspace>\n <mo>%</mo>\n </mrow>\n <annotation>$0.37\\,\\%$</annotation>\n </semantics></math> at 2 <i>Acm</i><sup>−2</sup>. The model indicates that modifying the membrane's microstructure has a more pronounced effect on the gas crossover than altering the swollen thickness. A correlation is derived to estimate the polymer diffusivity from the derived effective diffusivity through the membrane, which allows the determination of preferred membrane properties to lower hydrogen crossover.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400515","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400515","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The transport of hydrogen through an anion-exchange membrane (AEM) is analyzed by in-line product gas analysis in a large dynamic range (0.1–2 Acm−2) at ambient pressure and correlated to ex situ membrane properties, including volumetric electrolyte uptake, dimensional swelling and diffusivities. A commercial AF3-HWK9-75-X membrane from Ionomr Innovations Inc. is characterized and employed in a 25 cm2 electrolyzer cell, which is operated for 56 h at 60 °C in 1 M KOH solution. A model of the membrane is developed, based on a combination of existing theoretical knowledge regarding liquid electrolytes and measured properties of the membrane. The model is employed to quantify the transport parameters through the membrane and the porous electrode. The hydrogen transport through the membrane is 770 times slower than through the electrode. The anion-exchange membrane permits a low degree of gas crossover, with a hydrogen-in-oxygen concentration of 0.37 % $0.37\,\%$ at 2 Acm−2. The model indicates that modifying the membrane's microstructure has a more pronounced effect on the gas crossover than altering the swollen thickness. A correlation is derived to estimate the polymer diffusivity from the derived effective diffusivity through the membrane, which allows the determination of preferred membrane properties to lower hydrogen crossover.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
期刊最新文献
Issue Information Polarity-selective Transfer of Lipophilic Cargoes From Lipid Droplets (Oleosomes) to Lipid Bilayers (Adv. Mater. Interfaces 5/2025) In Situ X-Ray Photoelectron Spectroscopy Study of Atomic Layer Deposited Cerium Oxide on SiO2: Substrate Influence on the Reaction Mechanism During the Early Stages of Growth (Adv. Mater. Interfaces 5/2025) Issue Information Probing the Wannier function of Crystalline Solids with Angle-Resolved Photoemission Spectroscopy (Adv. Mater. Interfaces 4/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1