Vikas Vikas, Weibing Yang, Brian C Wilson, Timothy C Zhu, Robert H Hadfield
{"title":"Analysis of Singlet Oxygen Luminescence Generated By Protoporphyrin IX.","authors":"Vikas Vikas, Weibing Yang, Brian C Wilson, Timothy C Zhu, Robert H Hadfield","doi":"10.3390/antiox14020176","DOIUrl":null,"url":null,"abstract":"<p><p>The effectiveness of photodynamic therapy (PDT) for cancer treatment relies on the generation of cytotoxic singlet oxygen (<sup>1</sup>O<sub>2</sub>) in type II PDT. Hence, monitoring of <sup>1</sup>O<sub>2</sub> generation during PDT enables optimal treatment delivery to the tumor target with reduced off-target effects. Direct <sup>1</sup>O<sub>2</sub> observation by measuring its luminescence at 1270 nm remains challenging due to the very weak signal. This study presents <sup>1</sup>O<sub>2</sub> luminescence measurements using a time-resolved singlet oxygen luminescence detection system (TSOLD) applied to protoporphyrin IX (PpIX) in different solvents (ethanol and acetone) and biological media (bovine serum albumin and agarose-based solid phantom). The compact experimental setup includes a nanosecond diode laser with a function generator, a cuvette with photosensitizer solution, optical filtering and mirrors, an InGaAs single-photon avalanche diode detector, and time-tagger electronics. Increasing the concentration of PpIX in these media from 1 to 10 µg/g resulted in a 3-5 × increase in the <sup>1</sup>O<sub>2</sub> luminescence signal. Furthermore, increasing light scattering in the sample using Intralipid from 0.1 to 1% led to a decrease in the <sup>1</sup>O<sub>2</sub> luminescence signal and lifetime. These results confirm the marked effect of the microenvironment on the <sup>1</sup>O<sub>2</sub> signal and, hence, on the photodynamic efficacy.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020176","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The effectiveness of photodynamic therapy (PDT) for cancer treatment relies on the generation of cytotoxic singlet oxygen (1O2) in type II PDT. Hence, monitoring of 1O2 generation during PDT enables optimal treatment delivery to the tumor target with reduced off-target effects. Direct 1O2 observation by measuring its luminescence at 1270 nm remains challenging due to the very weak signal. This study presents 1O2 luminescence measurements using a time-resolved singlet oxygen luminescence detection system (TSOLD) applied to protoporphyrin IX (PpIX) in different solvents (ethanol and acetone) and biological media (bovine serum albumin and agarose-based solid phantom). The compact experimental setup includes a nanosecond diode laser with a function generator, a cuvette with photosensitizer solution, optical filtering and mirrors, an InGaAs single-photon avalanche diode detector, and time-tagger electronics. Increasing the concentration of PpIX in these media from 1 to 10 µg/g resulted in a 3-5 × increase in the 1O2 luminescence signal. Furthermore, increasing light scattering in the sample using Intralipid from 0.1 to 1% led to a decrease in the 1O2 luminescence signal and lifetime. These results confirm the marked effect of the microenvironment on the 1O2 signal and, hence, on the photodynamic efficacy.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.