Genome-Wide Identification and Drought-Responsive Functional Analysis of the GST Gene Family in Potato (Solanum tuberosum L.).

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants Pub Date : 2025-02-19 DOI:10.3390/antiox14020239
Ningfan Shi, Youfang Fan, Wei Zhang, Zhijia Zhang, Zhuanfang Pu, Zhongrun Li, Lijun Hu, Zhenzhen Bi, Panfeng Yao, Yuhui Liu, Zhen Liu, Jiangping Bai, Chao Sun
{"title":"Genome-Wide Identification and Drought-Responsive Functional Analysis of the <i>GST</i> Gene Family in Potato (<i>Solanum tuberosum</i> L.).","authors":"Ningfan Shi, Youfang Fan, Wei Zhang, Zhijia Zhang, Zhuanfang Pu, Zhongrun Li, Lijun Hu, Zhenzhen Bi, Panfeng Yao, Yuhui Liu, Zhen Liu, Jiangping Bai, Chao Sun","doi":"10.3390/antiox14020239","DOIUrl":null,"url":null,"abstract":"<p><p>Glutathione S-transferases (<i>GSTs</i>) play crucial roles in crop stress tolerance through protection against oxidative damage. In this study, we conducted genome-wide identification and expression analysis of the <i>GST</i> gene family in the autotetraploid potato cultivar Cooperative-88 (C88) using bioinformatic approaches. We identified 366 <i>GST</i> genes in the potato genome, which were classified into 10 subfamilies. Chromosomal mapping revealed that <i>StGSTs</i> were distributed across all 12 chromosomes, with 13 tandem duplication events observed in three subfamilies. Analysis of protein sequences identified 10 conserved motifs, with motif 1 potentially representing the <i>GST</i> domain. Analysis of cis-acting elements in the <i>StGSTs</i> promoter regions suggested their involvement in stress response pathways. RNA-seq analysis revealed that most <i>StGSTs</i> responded to both drought stress and DNA demethylation treatments. Quantitative PCR validation of 16 selected <i>StGSTs</i> identified four members that showed strong responses to both treatments, with distinct expression patterns between drought-tolerant (QS9) and drought-sensitive (ATL) varieties. Transient expression assays in tobacco demonstrated that these four <i>StGSTs</i> enhanced drought tolerance and may be regulated through DNA methylation pathways, though the precise mechanisms require further investigation. These findings provide a theoretical foundation for understanding the response and epigenetic regulation of potato <i>GST</i> genes under drought stress.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020239","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glutathione S-transferases (GSTs) play crucial roles in crop stress tolerance through protection against oxidative damage. In this study, we conducted genome-wide identification and expression analysis of the GST gene family in the autotetraploid potato cultivar Cooperative-88 (C88) using bioinformatic approaches. We identified 366 GST genes in the potato genome, which were classified into 10 subfamilies. Chromosomal mapping revealed that StGSTs were distributed across all 12 chromosomes, with 13 tandem duplication events observed in three subfamilies. Analysis of protein sequences identified 10 conserved motifs, with motif 1 potentially representing the GST domain. Analysis of cis-acting elements in the StGSTs promoter regions suggested their involvement in stress response pathways. RNA-seq analysis revealed that most StGSTs responded to both drought stress and DNA demethylation treatments. Quantitative PCR validation of 16 selected StGSTs identified four members that showed strong responses to both treatments, with distinct expression patterns between drought-tolerant (QS9) and drought-sensitive (ATL) varieties. Transient expression assays in tobacco demonstrated that these four StGSTs enhanced drought tolerance and may be regulated through DNA methylation pathways, though the precise mechanisms require further investigation. These findings provide a theoretical foundation for understanding the response and epigenetic regulation of potato GST genes under drought stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马铃薯(Solanum tuberosum L.)GST 基因家族的全基因组鉴定和抗旱功能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Unlocking Fertility: How Nitric Oxide Pathways Connect Obesity and Reproductive Health-The Role of Bariatric Surgery. Antioxidant and Photoprotective Activities of 3,4-Dihydroxybenzoic Acid and (+)-Catechin, Identified from Schima argentea Extract, in UVB-Irradiated HaCaT Cells. Is High-Dose Ubiquinone Therapy Before Cardiac Surgery Enough to Reduce the Incidence of Cardiac Surgery-Associated Acute Kidney Injury? A Randomized Controlled Trial. Pharmacological Mechanism and Drug Research Prospects of Ginsenoside Rb1 as an Antidepressant. Genome-Wide Identification and Drought-Responsive Functional Analysis of the GST Gene Family in Potato (Solanum tuberosum L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1