Jongkyu Kim, Yoon-Seok Chun, Namkyu Yoon, Byungkwon Kim, Kiin Choi, Sae-Kwang Ku, Namju Lee
{"title":"Effects of Black Cumin Seed Extract on Pancreatic Islet β-Cell Proliferation and Hypoglycemic Activity in Streptozotocin-Induced Diabetic Rats.","authors":"Jongkyu Kim, Yoon-Seok Chun, Namkyu Yoon, Byungkwon Kim, Kiin Choi, Sae-Kwang Ku, Namju Lee","doi":"10.3390/antiox14020174","DOIUrl":null,"url":null,"abstract":"<p><p>Thymoquinone (TQ), a bioactive compound derived from black cumin seeds, is renowned for its potent anti-obesity and anti-diabetic properties. Due to the stability challenges of TQ, it has predominantly been utilized in oil formulations. This study aimed to enhance the stability of TQ and investigated the impact of consuming insoluble fiber from black cumin seeds on restoring antioxidant function compromised by diabetes and improving hyperglycemia management. We evaluated the restorative effects of a 35-day administration of black cumin seed extract (BCS) on antioxidant function impaired by streptozotocin (STZ)-induced diabetes, alongside structural and functional alterations in the pancreas, liver, and kidneys. The results demonstrated significant improvements in organ weight, particularly in pancreatic tissue. Moreover, BCS administration markedly suppressed the expression of key genes associated with pancreatic dysfunction and damage, including caspase-3, transforming growth factor-beta 1 (TGF-β1), and interleukin-1 beta (IL-1β). Through oral glucose tolerance tests (OGTTs), BCS was found to effectively regulate chronic hyperglycemia and exhibit potential for managing acute hyperglycemia. These findings suggest that BCS not only addresses both glycemic and non-glycemic complications of diabetes but also offers a safe, long-term solution. Consequently, BCS emerges as a promising therapeutic agent for hyperglycemia management, including in prediabetic stages.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020174","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thymoquinone (TQ), a bioactive compound derived from black cumin seeds, is renowned for its potent anti-obesity and anti-diabetic properties. Due to the stability challenges of TQ, it has predominantly been utilized in oil formulations. This study aimed to enhance the stability of TQ and investigated the impact of consuming insoluble fiber from black cumin seeds on restoring antioxidant function compromised by diabetes and improving hyperglycemia management. We evaluated the restorative effects of a 35-day administration of black cumin seed extract (BCS) on antioxidant function impaired by streptozotocin (STZ)-induced diabetes, alongside structural and functional alterations in the pancreas, liver, and kidneys. The results demonstrated significant improvements in organ weight, particularly in pancreatic tissue. Moreover, BCS administration markedly suppressed the expression of key genes associated with pancreatic dysfunction and damage, including caspase-3, transforming growth factor-beta 1 (TGF-β1), and interleukin-1 beta (IL-1β). Through oral glucose tolerance tests (OGTTs), BCS was found to effectively regulate chronic hyperglycemia and exhibit potential for managing acute hyperglycemia. These findings suggest that BCS not only addresses both glycemic and non-glycemic complications of diabetes but also offers a safe, long-term solution. Consequently, BCS emerges as a promising therapeutic agent for hyperglycemia management, including in prediabetic stages.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.