{"title":"Fetal Growth Is Associated with Amniotic Fluid Antioxidant Capacity, Oxidative Stress, Minerals and Prenatal Supplementation: A Retrospective Study.","authors":"Mozhgan Kohzadi, Stan Kubow, Kristine G Koski","doi":"10.3390/antiox14020184","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Associations of antioxidants in prenatal over-the-counter multivitamin-mineral (OTC MVM) supplements with in-utero oxidative stress (OS), antioxidant capacity, and fetal growth are limited. Our objectives were to determine if five fetal ultrasound measurements [biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL), and estimated fetal weight] were associated with OTC MVM supplements and with minerals, biomarkers of OS, and total antioxidant capacity in amniotic fluid (AF).</p><p><strong>Methods: </strong>For this retrospective study, 176 pregnant women who had undergone age-related amniocentesis for genetic testing were included. Questionnaires recorded prenatal OTC MVM supplementation (yes, no). Ultrasound measurements for early (16-20 weeks) and late (32-36 weeks) gestation were extracted from medical charts. AF concentrations for 15 minerals and trace elements and OS biomarkers in AF [nitric oxide (NO), thiobarbituric acid-reactive substances (TBARS), and ferric-reducing antioxidant power (FRAP)] were measured at 12-20 weeks of gestation. Associations of AF minerals, OS biomarkers, and ultrasound measures were analyzed using multiple linear regressions.</p><p><strong>Results: </strong>Positive associations were observed between AF TBARS and seven AF minerals/elements (calcium, copper, magnesium, nickel, strontium, zinc and iron). At 16-20 weeks, AF copper, nickel, strontium, and selenium were positively associated with BPD, HC, AC, and FL, respectively, NO was positively associated with FL, and FRAP was inversely associated with estimated weight. At 32-36 weeks, calcium was positively associated with BPD and chromium and arsenic were negatively with HC. At 16-20 weeks, higher AF FRAP was inversely associated with FL and this exposure continued to be inversely associated with estimated weight at 32-36 weeks.</p><p><strong>Conclusions: </strong>Concentrations of AF minerals, trace elements and biomarkers of OS and in-utero antioxidant capacity were linked to specific ultrasound measurements at different stages of gestation, suggesting a complex interplay among in utero OS, antioxidant capacity, OTC MVM supplements, and fetal growth.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020184","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Associations of antioxidants in prenatal over-the-counter multivitamin-mineral (OTC MVM) supplements with in-utero oxidative stress (OS), antioxidant capacity, and fetal growth are limited. Our objectives were to determine if five fetal ultrasound measurements [biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL), and estimated fetal weight] were associated with OTC MVM supplements and with minerals, biomarkers of OS, and total antioxidant capacity in amniotic fluid (AF).
Methods: For this retrospective study, 176 pregnant women who had undergone age-related amniocentesis for genetic testing were included. Questionnaires recorded prenatal OTC MVM supplementation (yes, no). Ultrasound measurements for early (16-20 weeks) and late (32-36 weeks) gestation were extracted from medical charts. AF concentrations for 15 minerals and trace elements and OS biomarkers in AF [nitric oxide (NO), thiobarbituric acid-reactive substances (TBARS), and ferric-reducing antioxidant power (FRAP)] were measured at 12-20 weeks of gestation. Associations of AF minerals, OS biomarkers, and ultrasound measures were analyzed using multiple linear regressions.
Results: Positive associations were observed between AF TBARS and seven AF minerals/elements (calcium, copper, magnesium, nickel, strontium, zinc and iron). At 16-20 weeks, AF copper, nickel, strontium, and selenium were positively associated with BPD, HC, AC, and FL, respectively, NO was positively associated with FL, and FRAP was inversely associated with estimated weight. At 32-36 weeks, calcium was positively associated with BPD and chromium and arsenic were negatively with HC. At 16-20 weeks, higher AF FRAP was inversely associated with FL and this exposure continued to be inversely associated with estimated weight at 32-36 weeks.
Conclusions: Concentrations of AF minerals, trace elements and biomarkers of OS and in-utero antioxidant capacity were linked to specific ultrasound measurements at different stages of gestation, suggesting a complex interplay among in utero OS, antioxidant capacity, OTC MVM supplements, and fetal growth.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.