Paula Cilleros-Holgado, David Gómez-Fernández, Rocío Piñero-Pérez, José Manuel Romero-Domínguez, Diana Reche-López, Mónica Álvarez-Córdoba, Ana Romero-González, Alejandra López-Cabrera, Marta Castro De Oliveira, Andrés Rodríguez-Sacristán, Susana González-Granero, José Manuel García-Verdugo, José Antonio Sánchez-Alcázar
{"title":"Polydatin and Nicotinamide Prevent Iron Accumulation and Lipid Peroxidation in Cellular Models of Mitochondrial Diseases.","authors":"Paula Cilleros-Holgado, David Gómez-Fernández, Rocío Piñero-Pérez, José Manuel Romero-Domínguez, Diana Reche-López, Mónica Álvarez-Córdoba, Ana Romero-González, Alejandra López-Cabrera, Marta Castro De Oliveira, Andrés Rodríguez-Sacristán, Susana González-Granero, José Manuel García-Verdugo, José Antonio Sánchez-Alcázar","doi":"10.3390/antiox14020215","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, an iron-dependent form of non-apoptotic cell death, is regulated by a complex network involving lipid metabolism, iron homeostasis, and the oxidative-reductive system, with iron accumulation and lipid peroxidation as key drivers. Mitochondrial dysfunction and ROS overproduction often underlie the pathogenesis of mitochondrial diseases, for which treatment options are limited, emphasizing the need for novel therapies. In this study, we investigated whether polydatin and nicotinamide could reverse ferroptosis-related pathological features in cellular models derived from patients with pathogenic <i>GFM1</i> variants. Mutant fibroblasts showed increased iron and lipofuscin accumulation, altered expression of iron metabolism-related proteins, elevated lipid peroxidation, and heightened susceptibility to erastin-induced ferroptosis. Treatment with polydatin and nicotinamide effectively corrected these alterations and reduced iron accumulation and lipid peroxidation in induced neurons. Furthermore, chloramphenicol treatment in control cells mimicked the mutant phenotype, suggesting that these pathological changes are linked to the mitochondrial protein synthesis defect characteristic of pathogenic <i>GFM1</i> variants. Notably, adding vitamin E to the polydatin and nicotinamide co-treatment resulted in a reduction in the minimum effective concentration, suggesting potential benefits of its inclusion. In conclusion, the combination of polydatin, nicotinamide, and vitamin E could represent a promising therapeutic option for patients with mitochondrial disorders caused by pathogenic <i>GFM1</i> variants.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020215","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic cell death, is regulated by a complex network involving lipid metabolism, iron homeostasis, and the oxidative-reductive system, with iron accumulation and lipid peroxidation as key drivers. Mitochondrial dysfunction and ROS overproduction often underlie the pathogenesis of mitochondrial diseases, for which treatment options are limited, emphasizing the need for novel therapies. In this study, we investigated whether polydatin and nicotinamide could reverse ferroptosis-related pathological features in cellular models derived from patients with pathogenic GFM1 variants. Mutant fibroblasts showed increased iron and lipofuscin accumulation, altered expression of iron metabolism-related proteins, elevated lipid peroxidation, and heightened susceptibility to erastin-induced ferroptosis. Treatment with polydatin and nicotinamide effectively corrected these alterations and reduced iron accumulation and lipid peroxidation in induced neurons. Furthermore, chloramphenicol treatment in control cells mimicked the mutant phenotype, suggesting that these pathological changes are linked to the mitochondrial protein synthesis defect characteristic of pathogenic GFM1 variants. Notably, adding vitamin E to the polydatin and nicotinamide co-treatment resulted in a reduction in the minimum effective concentration, suggesting potential benefits of its inclusion. In conclusion, the combination of polydatin, nicotinamide, and vitamin E could represent a promising therapeutic option for patients with mitochondrial disorders caused by pathogenic GFM1 variants.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.