Biomechanical Analysis of Cycle-Tempo Effects on Motor Control Among Jump Rope Elites.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2025-02-08 DOI:10.3390/bioengineering12020162
Qi Zhou, Yufeng Liu, Jianguo Kang, Xiuping Wang, Kai Zhang, Gongbing Shan
{"title":"Biomechanical Analysis of Cycle-Tempo Effects on Motor Control Among Jump Rope Elites.","authors":"Qi Zhou, Yufeng Liu, Jianguo Kang, Xiuping Wang, Kai Zhang, Gongbing Shan","doi":"10.3390/bioengineering12020162","DOIUrl":null,"url":null,"abstract":"<p><p>Jump rope is a widely applied basic training technique in various sports, yet it is understudied biomechanically. This study investigates the impact of cycle-tempo-induced motor control changes in elite jump rope athletes, addressing the biomechanical gap of cyclic skill control. The hypothesis posited two accelerations per jump cycle-one in front of and one behind the body-and anticipated that increased cycle frequency would alter the distribution of acceleration time within a cycle. Using 3D motion capture technology, 12 young elite jump rope athletes were analyzed at 100, 140, and 180 revolutions per minute (rpm). The kinematic parameters obtained confirmed the presence of two distinct accelerations per cycle. As tempo increased, the percentage of rear acceleration time increased from 9.58% at 100 rpm to 17.42% at 180 rpm, while front acceleration time decreased from 39.03% at 100 rpm to 31.40% at 180 rpm, along with peak velocities increasing from 12.94 m/s at 100 rpm to 22.74 m/s at 180 rpm significantly (<i>p</i> < 0.01). Rope trajectory analysis indicated a consistent movement pattern across tempos, primarily in the sagittal plane. Variations in skill control revealed shorter contact phases, decreasing from 61.53% at 100 rpm to 48.25% at 180 rpm, as well as a reduced vertical range of motion for the center of gravity (from 0.15 body height at 100 rpm to 0.06 body height at 180 rpm) and feet (from 0.05 body height at 100 rpm to 0.03 body height at 180 rpm) (<i>p</i> < 0.05). Significant reductions were also observed in the flexion/extension range of motion for the hip (from 22.31° at 100 rpm to 3.47° at 180 rpm), knee (from 49.31° at 100 rpm to 9.35° at 180 rpm), and ankle (from 52.99° at 100 rpm to 21.41° at 180 rpm) (<i>p</i> < 0.01). These findings enhance the understanding of motor control adaptations to different tempos and have practical implications for developing coaching programs aimed at optimizing performance, stability, and efficiency in jump rope training.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020162","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Jump rope is a widely applied basic training technique in various sports, yet it is understudied biomechanically. This study investigates the impact of cycle-tempo-induced motor control changes in elite jump rope athletes, addressing the biomechanical gap of cyclic skill control. The hypothesis posited two accelerations per jump cycle-one in front of and one behind the body-and anticipated that increased cycle frequency would alter the distribution of acceleration time within a cycle. Using 3D motion capture technology, 12 young elite jump rope athletes were analyzed at 100, 140, and 180 revolutions per minute (rpm). The kinematic parameters obtained confirmed the presence of two distinct accelerations per cycle. As tempo increased, the percentage of rear acceleration time increased from 9.58% at 100 rpm to 17.42% at 180 rpm, while front acceleration time decreased from 39.03% at 100 rpm to 31.40% at 180 rpm, along with peak velocities increasing from 12.94 m/s at 100 rpm to 22.74 m/s at 180 rpm significantly (p < 0.01). Rope trajectory analysis indicated a consistent movement pattern across tempos, primarily in the sagittal plane. Variations in skill control revealed shorter contact phases, decreasing from 61.53% at 100 rpm to 48.25% at 180 rpm, as well as a reduced vertical range of motion for the center of gravity (from 0.15 body height at 100 rpm to 0.06 body height at 180 rpm) and feet (from 0.05 body height at 100 rpm to 0.03 body height at 180 rpm) (p < 0.05). Significant reductions were also observed in the flexion/extension range of motion for the hip (from 22.31° at 100 rpm to 3.47° at 180 rpm), knee (from 49.31° at 100 rpm to 9.35° at 180 rpm), and ankle (from 52.99° at 100 rpm to 21.41° at 180 rpm) (p < 0.01). These findings enhance the understanding of motor control adaptations to different tempos and have practical implications for developing coaching programs aimed at optimizing performance, stability, and efficiency in jump rope training.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Universal healthcare as pandemic preparedness: The lives and costs that could have been saved during the COVID-19 pandemic.
IF 11.1 1区 综合性期刊Proceedings of the National Academy of Sciences of the United States of AmericaPub Date : 2022-06-21 DOI: 10.1073/pnas.2200536119
Alison P Galvani, Alyssa S Parpia, Abhishek Pandey, Pratha Sah, Kenneth Colón, Gerald Friedman, Travis Campbell, James G Kahn, Burton H Singer, Meagan C Fitzpatrick
Are medical students equipped for digital studies?Have their hopes and fears been confirmed during Covid-19? What should we consider in the future?
IF 0 Journal of European CMEPub Date : 2021-12-14 DOI: 10.1080/21614083.2021.2014098
Stephanie Herbstreit, Margarita Gestmann, Cynthia Szalai, Anke Diehl
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
Inflammatory Cell-Targeted Delivery Systems for Myocardial Infarction Treatment. Biomedical Applications of Big Data and Artificial Intelligence. An Innovative Coded Language for Transferring Data via a Haptic Thermal Interface. Development of Mathematical Model for Understanding Microcirculation in Diabetic Foot Ulcers Based on Ankle-Brachial Index. Different Oral Appliance Designs Demonstrate Different Rates of Efficacy for the Treatment of Obstructive Sleep Apnea: A Review Article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1