{"title":"Moderate Highland Barley Intake Affects Anti-Fatigue Capacity in Mice via Metabolism, Anti-Oxidative Effects and Gut Microbiota.","authors":"Liangxing Zhao, Qingyu Zhao, Sameh Sharafeldin, Luman Sang, Chao Wang, Yong Xue, Qun Shen","doi":"10.3390/nu17040733","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>this study aimed to explore the effects of different intake levels (20-80%) of highland barley on the anti-fatigue capacity of ICR mice, focusing on energy metabolism, metabolite accumulation, oxidative stress, and changes in the gut microbiota.</p><p><strong>Methods: </strong>male ICR mice were assigned to five groups: control (normal diet) and four experimental groups with highland barley supplementation at 20%, 40%, 60%, and 80% of total dietary energy. Anti-fatigue performance was assessed by behavioral experiments (rotarod, running, and exhaustive swimming tests), biochemical markers, and gut microbiota analysis.</p><p><strong>Results: </strong>the results showed that moderate supplementation (20%) significantly enhanced exercise endurance and anti-fatigue capacity, as evidenced by increased liver glycogen (134.48%), muscle glycogen (87.75%), ATP content (92.07%), Na<sup>+</sup>-K<sup>+</sup>-ATPase activity (48.39%), and antioxidant enzyme activities (superoxide dismutase (103.31%), catalase (87.75%), glutathione peroxidase (81.14%). Post-exercise accumulation of blood lactate, quadriceps muscle lactate, serum urea nitrogen, and the oxidative stress marker malondialdehyde was significantly reduced, with differences of 31.52%, 21.83%, 21.72%, and 33.76%, respectively. Additionally, 20% supplementation promoted the growth of beneficial gut microbiota associated with anti-fatigue effects, including <i>unclassified_f_Lachnospiraceae</i>, <i>g_norank_f_Peptococcaceae</i>, <i>Lachnospiraceae NK4A136</i>, <i>Colidextribacter</i>, and <i>Turicibacter</i>. However, when intake reached 60% or more, anti-fatigue effects diminished, with decreased antioxidant enzyme activity, increased accumulation of metabolic waste, and a rise in potentially harmful microbiota (<i>Allobaculum</i>, <i>Desulfovibrio</i>, and <i>norank_f_norank_o_RF39</i>).</p><p><strong>Conclusions: </strong>moderate highland barley supplementation (20% of total dietary energy) enhances anti-fatigue capacity, while excessive intake (≥60%) may have adverse effects.</p>","PeriodicalId":19486,"journal":{"name":"Nutrients","volume":"17 4","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858136/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrients","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/nu17040733","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: this study aimed to explore the effects of different intake levels (20-80%) of highland barley on the anti-fatigue capacity of ICR mice, focusing on energy metabolism, metabolite accumulation, oxidative stress, and changes in the gut microbiota.
Methods: male ICR mice were assigned to five groups: control (normal diet) and four experimental groups with highland barley supplementation at 20%, 40%, 60%, and 80% of total dietary energy. Anti-fatigue performance was assessed by behavioral experiments (rotarod, running, and exhaustive swimming tests), biochemical markers, and gut microbiota analysis.
Results: the results showed that moderate supplementation (20%) significantly enhanced exercise endurance and anti-fatigue capacity, as evidenced by increased liver glycogen (134.48%), muscle glycogen (87.75%), ATP content (92.07%), Na+-K+-ATPase activity (48.39%), and antioxidant enzyme activities (superoxide dismutase (103.31%), catalase (87.75%), glutathione peroxidase (81.14%). Post-exercise accumulation of blood lactate, quadriceps muscle lactate, serum urea nitrogen, and the oxidative stress marker malondialdehyde was significantly reduced, with differences of 31.52%, 21.83%, 21.72%, and 33.76%, respectively. Additionally, 20% supplementation promoted the growth of beneficial gut microbiota associated with anti-fatigue effects, including unclassified_f_Lachnospiraceae, g_norank_f_Peptococcaceae, Lachnospiraceae NK4A136, Colidextribacter, and Turicibacter. However, when intake reached 60% or more, anti-fatigue effects diminished, with decreased antioxidant enzyme activity, increased accumulation of metabolic waste, and a rise in potentially harmful microbiota (Allobaculum, Desulfovibrio, and norank_f_norank_o_RF39).
Conclusions: moderate highland barley supplementation (20% of total dietary energy) enhances anti-fatigue capacity, while excessive intake (≥60%) may have adverse effects.
期刊介绍:
Nutrients (ISSN 2072-6643) is an international, peer-reviewed open access advanced forum for studies related to Human Nutrition. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.