Halozincate ionic liquid electrolyte enabled high-temperature dendrite-free Zn metal batteries†

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2025-02-27 DOI:10.1039/D4EE06146B
Mingchen Yang, Xiuyang Zou, Mingzhu Wu, Jiangtao Yu, Xinyu Ma, Yin Hu and Feng Yan
{"title":"Halozincate ionic liquid electrolyte enabled high-temperature dendrite-free Zn metal batteries†","authors":"Mingchen Yang, Xiuyang Zou, Mingzhu Wu, Jiangtao Yu, Xinyu Ma, Yin Hu and Feng Yan","doi":"10.1039/D4EE06146B","DOIUrl":null,"url":null,"abstract":"<p >Aqueous Zn metal batteries (ZMBs) are receiving increasing attention due to their safety, cost-effectiveness, and scalability. However, aqueous ZMBs suffer from the hydrogen evolution reaction (HER), dendrite growth, and intrinsic volatility of electrolytes at high temperatures, hindering their practical application in mining/drilling, industrial manufacturing, and aerospace. Here, we introduce an anhydrous electrolyte design by using halozincate ionic liquid electrolyte (HZLE) to achieve dendrite-free Zn anode chemistry and facilitate high-temperature ZMBs. The halozincate solvation structure in HZLE pulls out a coordination channel for fast Zn<small><sup>2+</sup></small> transport and enables high reversible deposition/dissolution of the Zn anode. The Zn‖Ti cells show uniform Zn deposition with an average Zn plating/stripping Coulombic efficiency (CE) of 99.99%. As a result, Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>‖Zn batteries exhibit high CE exceeding 99.81% at 25 °C and can sustain 1000 deep cycles at 80 °C. This HZLE design offers an opportunity for alkali–metal–ion batteries to operate at high temperatures.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 7","pages":" 3365-3375"},"PeriodicalIF":30.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee06146b","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn metal batteries (ZMBs) are receiving increasing attention due to their safety, cost-effectiveness, and scalability. However, aqueous ZMBs suffer from the hydrogen evolution reaction (HER), dendrite growth, and intrinsic volatility of electrolytes at high temperatures, hindering their practical application in mining/drilling, industrial manufacturing, and aerospace. Here, we introduce an anhydrous electrolyte design by using halozincate ionic liquid electrolyte (HZLE) to achieve dendrite-free Zn anode chemistry and facilitate high-temperature ZMBs. The halozincate solvation structure in HZLE pulls out a coordination channel for fast Zn2+ transport and enables high reversible deposition/dissolution of the Zn anode. The Zn‖Ti cells show uniform Zn deposition with an average Zn plating/stripping Coulombic efficiency (CE) of 99.99%. As a result, Na3V2(PO4)3‖Zn batteries exhibit high CE exceeding 99.81% at 25 °C and can sustain 1000 deep cycles at 80 °C. This HZLE design offers an opportunity for alkali–metal–ion batteries to operate at high temperatures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卤化盐离子液体电解质实现高温无枝晶锌金属电池
水锌金属电池(zmb)因其安全性、成本效益和可扩展性而受到越来越多的关注。然而,含水zmb受到析氢反应(HER)、枝晶生长和高温下电解质固有挥发性的影响,阻碍了它们在采矿/钻井、工业制造和航空航天领域的实际应用。本文采用卤化盐离子液体电解质(HZLE)设计无水电解质,实现无枝晶锌阳极化学,促进高温zmb的制备。在HZLE中,卤代盐溶剂化结构为Zn2+的快速迁移提供了一个配位通道,使Zn阳极的沉积/溶解具有高可逆性。锌||钛电池锌沉积均匀,平均镀锌/剥离库仑效率(CE)为99.99%。结果表明,Na3V2(PO4)3||锌电池在25℃下具有99.81%以上的高CE,在80℃下可维持1000次深循环。这种HZLE设计为碱金属离子电池在高温下工作提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Elucidating the Proton-Coupled Oxygen Reduction Pathway in Protonic Ceramic Fuel Cells Stabilizing Pure Phase of FAPbI₃ Perovskite Enabled by Solid-Liquid Low Entropy Ink Interface Engineering Principles for Hard Carbon Anodes in Sodium-Ion Batteries: From Mechanisms to Synergistic Strategies Battery Aging Assessment: From Critical Insights to Enhanced Diagnosis Electric double layer overlapping effect in high-density sub-nanoclusters for enhanced acidic oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1