Heterovalent-doping-induced ultrasensitive and highly exclusive ethylene sensor: Application to crop quality inspection

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2025-02-27 DOI:10.1016/j.cej.2025.161075
Kewei Liu, Zichen Zheng, Yiwen Zhou, Carla Bittencourt, Marc Debliquy, Qiaoquan Liu, Chao Zhang
{"title":"Heterovalent-doping-induced ultrasensitive and highly exclusive ethylene sensor: Application to crop quality inspection","authors":"Kewei Liu, Zichen Zheng, Yiwen Zhou, Carla Bittencourt, Marc Debliquy, Qiaoquan Liu, Chao Zhang","doi":"10.1016/j.cej.2025.161075","DOIUrl":null,"url":null,"abstract":"A promising ethylene sensor based on Sb<sub>2</sub>MoO<sub>6</sub> (SMO) with a permeable lamellar structure and tunable W dopants is proposed. The optimal 5 mol% W-doped SMO featuring atomically distributed heterovalent doping sites enables the ideal combination of high response (121.26/2.6 for 10/0.5 ppm), short response/recovery time (180 s/54 s for 10 ppm), low limit of detection (LoD) (23.18 ppb), excellent selectivity, good long-term stability (45 days), and robust performance in high humidity (LoD of 31.5 ppb at 80 % relative humidity). The rich W<sup>4+</sup> doping-induced active sites are primarily responsible for the strengthened gas-sensing performances. Theoretical simulations reveal that W doping modulates the SMO lattice through substitutional and interstitial mechanisms, optimizing adsorption energy and charge transfer between ethylene and Mo sites, thereby resolving the trade-off between high response and recovery speed. Furthermore, the real-world application in detecting and differentiating moldy rice across storage periods underscores its potential for on-site quality monitoring in the grain industry. This work highlights the significant role of heteroatom doping in tailoring material properties, positioning W-doped SMO as a highly effective gas-sensing material for agricultural and environmental applications.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"85 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.161075","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A promising ethylene sensor based on Sb2MoO6 (SMO) with a permeable lamellar structure and tunable W dopants is proposed. The optimal 5 mol% W-doped SMO featuring atomically distributed heterovalent doping sites enables the ideal combination of high response (121.26/2.6 for 10/0.5 ppm), short response/recovery time (180 s/54 s for 10 ppm), low limit of detection (LoD) (23.18 ppb), excellent selectivity, good long-term stability (45 days), and robust performance in high humidity (LoD of 31.5 ppb at 80 % relative humidity). The rich W4+ doping-induced active sites are primarily responsible for the strengthened gas-sensing performances. Theoretical simulations reveal that W doping modulates the SMO lattice through substitutional and interstitial mechanisms, optimizing adsorption energy and charge transfer between ethylene and Mo sites, thereby resolving the trade-off between high response and recovery speed. Furthermore, the real-world application in detecting and differentiating moldy rice across storage periods underscores its potential for on-site quality monitoring in the grain industry. This work highlights the significant role of heteroatom doping in tailoring material properties, positioning W-doped SMO as a highly effective gas-sensing material for agricultural and environmental applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
Anhydrous deep eutectic electrolyte: Enabling dendrite-free and highly stable zinc anodes Heterovalent-doping-induced ultrasensitive and highly exclusive ethylene sensor: Application to crop quality inspection Breaking the hemicellulose barrier for the preparation of high-performance porous carbon for supercapacitors and Zinc-Ion capacitors Strengthening nanofiltration membrane: Strategies for enhanced antifouling performance Recent progress of solar-driven interfacial evaporation based on salt-resistant and oil-repellent materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1