Genetically Encoded Single-Wavelength Sensor with High Specificity for Imaging ATP in Living Cells

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2025-02-17 DOI:10.1021/acssensors.4c0338910.1021/acssensors.4c03389
Lu Xiao, Xuexi Wang, Dujuan Liu, Chuang Yan, Xian-En Zhang* and Minghai Chen*, 
{"title":"Genetically Encoded Single-Wavelength Sensor with High Specificity for Imaging ATP in Living Cells","authors":"Lu Xiao,&nbsp;Xuexi Wang,&nbsp;Dujuan Liu,&nbsp;Chuang Yan,&nbsp;Xian-En Zhang* and Minghai Chen*,&nbsp;","doi":"10.1021/acssensors.4c0338910.1021/acssensors.4c03389","DOIUrl":null,"url":null,"abstract":"<p >Adenosine 5′-triphosphate (ATP) plays an essential role in regulating many metabolic activities. Therefore, developing tools to directly measure ATP in real time will help us understand its underlying functions. Here, we report an optimized genetically encoded ATP sensor (OAS1.0) with a high specificity for ATP detection. OAS1.0 can be genetically targeted to specific cell types and subcellular compartments to monitor ATP production and consumption. We also used OAS1.0 to visualize metabolic-activity-dependent changes in ATP in normal and tumor cell lines and ATP consumption during the virus–host interaction process. OAS1.0 also worked well with a Ca<sup>2+</sup> sensor to concurrently monitor ATP and Ca<sup>2+</sup> dynamics in living cells. Thus, OAS1.0 represents a promising tool for ATP imaging under both physiological and pathophysiological conditions.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 2","pages":"1398–1406 1398–1406"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.4c03389","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Adenosine 5′-triphosphate (ATP) plays an essential role in regulating many metabolic activities. Therefore, developing tools to directly measure ATP in real time will help us understand its underlying functions. Here, we report an optimized genetically encoded ATP sensor (OAS1.0) with a high specificity for ATP detection. OAS1.0 can be genetically targeted to specific cell types and subcellular compartments to monitor ATP production and consumption. We also used OAS1.0 to visualize metabolic-activity-dependent changes in ATP in normal and tumor cell lines and ATP consumption during the virus–host interaction process. OAS1.0 also worked well with a Ca2+ sensor to concurrently monitor ATP and Ca2+ dynamics in living cells. Thus, OAS1.0 represents a promising tool for ATP imaging under both physiological and pathophysiological conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Artificial Intelligence in Gas Sensing: A Review Sensing the Future of Thrombosis Management: Integrating Vessel-on-a-Chip Models, Advanced Biosensors, and AI-Driven Digital Twins Nickel Oxide Nanostructures for Gas Sensing: Recent Advances, Challenges, and Future Perspectives Recent Advances of Nitrobenzoselenadiazole for Imaging and Therapy Nanomaterial Innovations and Machine Learning in Gas Sensing Technologies for Real-Time Health Diagnostics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1