Lu Xiao, Xuexi Wang, Dujuan Liu, Chuang Yan, Xian-En Zhang* and Minghai Chen*,
{"title":"Genetically Encoded Single-Wavelength Sensor with High Specificity for Imaging ATP in Living Cells","authors":"Lu Xiao, Xuexi Wang, Dujuan Liu, Chuang Yan, Xian-En Zhang* and Minghai Chen*, ","doi":"10.1021/acssensors.4c0338910.1021/acssensors.4c03389","DOIUrl":null,"url":null,"abstract":"<p >Adenosine 5′-triphosphate (ATP) plays an essential role in regulating many metabolic activities. Therefore, developing tools to directly measure ATP in real time will help us understand its underlying functions. Here, we report an optimized genetically encoded ATP sensor (OAS1.0) with a high specificity for ATP detection. OAS1.0 can be genetically targeted to specific cell types and subcellular compartments to monitor ATP production and consumption. We also used OAS1.0 to visualize metabolic-activity-dependent changes in ATP in normal and tumor cell lines and ATP consumption during the virus–host interaction process. OAS1.0 also worked well with a Ca<sup>2+</sup> sensor to concurrently monitor ATP and Ca<sup>2+</sup> dynamics in living cells. Thus, OAS1.0 represents a promising tool for ATP imaging under both physiological and pathophysiological conditions.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 2","pages":"1398–1406 1398–1406"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.4c03389","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adenosine 5′-triphosphate (ATP) plays an essential role in regulating many metabolic activities. Therefore, developing tools to directly measure ATP in real time will help us understand its underlying functions. Here, we report an optimized genetically encoded ATP sensor (OAS1.0) with a high specificity for ATP detection. OAS1.0 can be genetically targeted to specific cell types and subcellular compartments to monitor ATP production and consumption. We also used OAS1.0 to visualize metabolic-activity-dependent changes in ATP in normal and tumor cell lines and ATP consumption during the virus–host interaction process. OAS1.0 also worked well with a Ca2+ sensor to concurrently monitor ATP and Ca2+ dynamics in living cells. Thus, OAS1.0 represents a promising tool for ATP imaging under both physiological and pathophysiological conditions.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.