Tung oil-derived polyurethane composite foams based on dual dynamic phenol-carbamate exchange with desirable mechanical properties, flame retardancy and recyclability
Baozheng Zhao , Fei Song , Zheng Pan , Yijiao Xue , Linfeng Tian , Tiancheng Zhang , Li Tan , Rui Yang , Yonghong Zhou , Meng Zhang
{"title":"Tung oil-derived polyurethane composite foams based on dual dynamic phenol-carbamate exchange with desirable mechanical properties, flame retardancy and recyclability","authors":"Baozheng Zhao , Fei Song , Zheng Pan , Yijiao Xue , Linfeng Tian , Tiancheng Zhang , Li Tan , Rui Yang , Yonghong Zhou , Meng Zhang","doi":"10.1016/j.compositesb.2025.112306","DOIUrl":null,"url":null,"abstract":"<div><div>At present, thermoset polyurethane foams were mainly derived from petroleum-based resources and faced inherent challenges such as difficulty in recycling and fire hazard. In this study, tung oil and catechol were used to prepare tung oil-derived polyphenols via Friedel-Crafts alkylation reaction. These polyphenols were combined with isocyanate to synthesize tung oil-derived polyurethane (TPU) foam. With the presence of dual dynamically cross-linked phenol-carbamate bonds, the TPU foam could be hot-pressed several times into a smooth and homogeneous TPU film. To improve the fire resistance and compressive strength of TPU foam, phytic acid functionalized metal-organic frameworks (UiO-66-NH<sub>2</sub>@PA) flame retardants were successfully synthesized by one-pot solvothermal method. By adding 20 wt% of flame retardants, the TPU composite foams achieved a UL-94 V-0 flammability rating with a limiting oxygen index of 28.1 vol%. The total heat release, total smoke release, CO production and CO<sub>2</sub> production of the TPU composite foams were reduced by 43.1 %, 57.8 %, 63.6 % and 62.1 %, respectively, compared to the pure TPU foam. Furthermore, the compressive strength of the TPU composite foam continued to increase with increasing flame retardants content, reaching a maximum of 0.55 MPa. Importantly, the introduction of the flame retardants didn't affect the hot-press recycling performance of the TPU foam, but instead improved the tensile strength and flame retardancy of the recycled TPU film. This work paved the way to produce bio-based PU foam with excellent flame retardancy and recyclability.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"297 ","pages":"Article 112306"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825001969","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
At present, thermoset polyurethane foams were mainly derived from petroleum-based resources and faced inherent challenges such as difficulty in recycling and fire hazard. In this study, tung oil and catechol were used to prepare tung oil-derived polyphenols via Friedel-Crafts alkylation reaction. These polyphenols were combined with isocyanate to synthesize tung oil-derived polyurethane (TPU) foam. With the presence of dual dynamically cross-linked phenol-carbamate bonds, the TPU foam could be hot-pressed several times into a smooth and homogeneous TPU film. To improve the fire resistance and compressive strength of TPU foam, phytic acid functionalized metal-organic frameworks (UiO-66-NH2@PA) flame retardants were successfully synthesized by one-pot solvothermal method. By adding 20 wt% of flame retardants, the TPU composite foams achieved a UL-94 V-0 flammability rating with a limiting oxygen index of 28.1 vol%. The total heat release, total smoke release, CO production and CO2 production of the TPU composite foams were reduced by 43.1 %, 57.8 %, 63.6 % and 62.1 %, respectively, compared to the pure TPU foam. Furthermore, the compressive strength of the TPU composite foam continued to increase with increasing flame retardants content, reaching a maximum of 0.55 MPa. Importantly, the introduction of the flame retardants didn't affect the hot-press recycling performance of the TPU foam, but instead improved the tensile strength and flame retardancy of the recycled TPU film. This work paved the way to produce bio-based PU foam with excellent flame retardancy and recyclability.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.