Systematic evaluation of soil-based zeolite materials for the remediation of metal(loid)-contaminated water bodies

Zheting Chu , Huan Tang , Jiaxin Liang , Jing Li, Dazhong Yang, Ranhao Wang, Hong Chen
{"title":"Systematic evaluation of soil-based zeolite materials for the remediation of metal(loid)-contaminated water bodies","authors":"Zheting Chu ,&nbsp;Huan Tang ,&nbsp;Jiaxin Liang ,&nbsp;Jing Li,&nbsp;Dazhong Yang,&nbsp;Ranhao Wang,&nbsp;Hong Chen","doi":"10.1016/j.seh.2025.100143","DOIUrl":null,"url":null,"abstract":"<div><div>The synthesis of a diverse framework structure of zeolite materials using abundant natural soils as raw materials showcases the implementation of green chemistry principles and their feasibility for environmental engineering. However, no systematic evaluation of the soil-based zeolite materials for the remediation of metal(loid)-contaminated water bodies has been conducted. Herein, using the widely spread Chinese red soil and loess as raw materials, we have successfully synthesized eight zeolite materials and established a novel soil-based zeolite library. All eight zeolite types had different adsorption capacity for 10 metal(loid) ions, including As(III), As(V), Cd, Cr(III), Cr(VI), Cu, Hg, Ni, Pb, and Zn. The selectivity regarding different metal(loid) ions of zeolites was influenced by their framework structures, pH, speciation, and concentration of coexisting ions. A mechanism study revealed that ion exchange, electrostatic attraction, and chemical precipitation synergistically contribute to the interactions between soil-based zeolite materials and metal(loid)s. This work demonstrated the construction of a soil-based zeolite library from natural soils in line with green chemistry principles. Systematic metal(loid) adsorption data for diverse water bodies were presented, including deionized, tap, sea and river water. The information is important for future engineering application of soil-based zeolites in metal(loid)-contaminated water or soil remediation.</div></div>","PeriodicalId":94356,"journal":{"name":"Soil & Environmental Health","volume":"3 2","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Environmental Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949919425000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of a diverse framework structure of zeolite materials using abundant natural soils as raw materials showcases the implementation of green chemistry principles and their feasibility for environmental engineering. However, no systematic evaluation of the soil-based zeolite materials for the remediation of metal(loid)-contaminated water bodies has been conducted. Herein, using the widely spread Chinese red soil and loess as raw materials, we have successfully synthesized eight zeolite materials and established a novel soil-based zeolite library. All eight zeolite types had different adsorption capacity for 10 metal(loid) ions, including As(III), As(V), Cd, Cr(III), Cr(VI), Cu, Hg, Ni, Pb, and Zn. The selectivity regarding different metal(loid) ions of zeolites was influenced by their framework structures, pH, speciation, and concentration of coexisting ions. A mechanism study revealed that ion exchange, electrostatic attraction, and chemical precipitation synergistically contribute to the interactions between soil-based zeolite materials and metal(loid)s. This work demonstrated the construction of a soil-based zeolite library from natural soils in line with green chemistry principles. Systematic metal(loid) adsorption data for diverse water bodies were presented, including deionized, tap, sea and river water. The information is important for future engineering application of soil-based zeolites in metal(loid)-contaminated water or soil remediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
The biomineralization process of Ochrobactrum EEELCW01 and its implication for arsenic immobilization Systematic evaluation of soil-based zeolite materials for the remediation of metal(loid)-contaminated water bodies Insights into different microwave-activated persulfate systems for chlorpyrifos degradation in soil: Impacts of soil properties, toxicity, and energy consumption Germanium in the environment: Current knowledge and gap identification Risk assessment based on Cr, Mn, Co, Ni, Cu, Zn, Ba, Pb, and Sc contents in soils and blood Pb levels in children: Seasonable variations and Monte Carlo simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1