Optimal machine learning algorithm for prediction model for retention times of plant toxins

IF 5.6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food Control Pub Date : 2025-02-24 DOI:10.1016/j.foodcont.2025.111251
Masaru Taniguchi , Shoichiro Noguchi , Hidenobu Kawashima , Jun Sugiura , Tomoyuki Tsuchiyama , Tomiaki Minatani , Hitoshi Miyazaki , Kei Zaitsu
{"title":"Optimal machine learning algorithm for prediction model for retention times of plant toxins","authors":"Masaru Taniguchi ,&nbsp;Shoichiro Noguchi ,&nbsp;Hidenobu Kawashima ,&nbsp;Jun Sugiura ,&nbsp;Tomoyuki Tsuchiyama ,&nbsp;Tomiaki Minatani ,&nbsp;Hitoshi Miyazaki ,&nbsp;Kei Zaitsu","doi":"10.1016/j.foodcont.2025.111251","DOIUrl":null,"url":null,"abstract":"<div><div>In suspect screening or nontargeted analysis via LC high-resolution MS (LC-HRMS), high-accuracy identification typically relies on retention times (RTs) and MS–MS spectra. However, RTs are difficult to obtain due to the scarcity of reference standards. Here, we developed a Quantitative Structure Retention Relationships (QSRR) -based RT prediction model using machine learning, specifically for plant toxins implicated in accidental food poisoning. A dataset for QSRR model development was generated using the molecular descriptors (MDs) and experimental RTs of 524 compounds. QSRR models were constructed as regression models derived from the relationship between experimental RTs and MDs using 10 machine learning algorithms. The QSRR model with support vector regression (SVR) outperformed the other QSRR models in generalization on the analyzed dataset (<em>R</em><sup>2</sup>: 0.972, mean absolute error: 183 [approximately 1.6 min], mean absolute percentage error [MAPE]: 6%; <em>Q</em><sup>2</sup>: 0.875, MAE: 584 [approximately 2.0 min], MAPE: 15%). Furthermore, the SVR QSRR model successfully predicted the RTs of nine plant toxins with errors of ±0.5 min. Thus, this model enhances the confidence level of plant toxin identification via LC-HRMS.</div></div>","PeriodicalId":319,"journal":{"name":"Food Control","volume":"174 ","pages":"Article 111251"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Control","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956713525001203","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In suspect screening or nontargeted analysis via LC high-resolution MS (LC-HRMS), high-accuracy identification typically relies on retention times (RTs) and MS–MS spectra. However, RTs are difficult to obtain due to the scarcity of reference standards. Here, we developed a Quantitative Structure Retention Relationships (QSRR) -based RT prediction model using machine learning, specifically for plant toxins implicated in accidental food poisoning. A dataset for QSRR model development was generated using the molecular descriptors (MDs) and experimental RTs of 524 compounds. QSRR models were constructed as regression models derived from the relationship between experimental RTs and MDs using 10 machine learning algorithms. The QSRR model with support vector regression (SVR) outperformed the other QSRR models in generalization on the analyzed dataset (R2: 0.972, mean absolute error: 183 [approximately 1.6 min], mean absolute percentage error [MAPE]: 6%; Q2: 0.875, MAE: 584 [approximately 2.0 min], MAPE: 15%). Furthermore, the SVR QSRR model successfully predicted the RTs of nine plant toxins with errors of ±0.5 min. Thus, this model enhances the confidence level of plant toxin identification via LC-HRMS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Control
Food Control 工程技术-食品科技
CiteScore
12.20
自引率
6.70%
发文量
758
审稿时长
33 days
期刊介绍: Food Control is an international journal that provides essential information for those involved in food safety and process control. Food Control covers the below areas that relate to food process control or to food safety of human foods: • Microbial food safety and antimicrobial systems • Mycotoxins • Hazard analysis, HACCP and food safety objectives • Risk assessment, including microbial and chemical hazards • Quality assurance • Good manufacturing practices • Food process systems design and control • Food Packaging technology and materials in contact with foods • Rapid methods of analysis and detection, including sensor technology • Codes of practice, legislation and international harmonization • Consumer issues • Education, training and research needs. The scope of Food Control is comprehensive and includes original research papers, authoritative reviews, short communications, comment articles that report on new developments in food control, and position papers.
期刊最新文献
Enhanced detection of aflatoxin B1 in single peanut kernels using laser-induced fluorescence and a weighted algorithm Recent advancements in chemometrics based non-destructive analytical techniques for rapid detection of adulterants in milk and dairy products – A review Food safety governance in Zimbabwe: Challenges, regulatory gaps, and strategies for global compliance Optimal machine learning algorithm for prediction model for retention times of plant toxins Effects of alkaline water-assisted tea polyphenol soaking on the physicochemical, biochemical, bacterial structure, and free amino acid composition of grass carp fillets during storage at 4 °C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1