Wei-Ming Tsai, Suqin Duan, Travis A. O’Brien, Jennifer L. Catto, Paul A. Ullrich, Yang Zhou, L. Ruby Leung, Zhe Feng, William R. Boos, D. L. Suhas, Fiaz Ahmed, J. David Neelin
{"title":"Co-Occurring Atmospheric Features and Their Contributions to Precipitation Extremes","authors":"Wei-Ming Tsai, Suqin Duan, Travis A. O’Brien, Jennifer L. Catto, Paul A. Ullrich, Yang Zhou, L. Ruby Leung, Zhe Feng, William R. Boos, D. L. Suhas, Fiaz Ahmed, J. David Neelin","doi":"10.1029/2024JD041687","DOIUrl":null,"url":null,"abstract":"<p>Object-based identification algorithms for atmospheric features are commonly utilized to attribute global precipitation. This study employs a systematic approach to examine feature co-occurrences and their relationships to mean and extreme precipitation. Four features are identified using existing data sets for atmospheric rivers (ARs), mesoscale convective systems (MCSs), low-pressure systems (LPSs), and fronts (FTs). Often, a single atmospheric phenomenon satisfies the criteria set by multiple feature identification algorithms, yielding an association between precipitation and multiple features. Over the extra-tropics, the number of features attributed to a single event typically increases with precipitation intensity. Over two-thirds of the precipitation is from co-occurring features, with a considerable fraction related to AR-FT co-occurrences. Over the tropics, about one-quarter of precipitation is associated with co-occurring features, with LPS-MCS co-occurrences contributing substantially in monsoon regions. MCSs are the leading single-feature contributors over tropical land and oceans. In the extra-tropics, FTs, ARs, and their co-occurrences account for over half of the total precipitation over oceans. AR-FT-MCS and FT-MCS co-occurrences contribute to extremes (precipitation exceeding the 95th percentile) over both oceans (over 30%) and land (over 20%). Any combination of features involving MCSs shows a larger contribution to high percentiles of precipitation intensity. A case analysis indicates that AR-FT-MCS co-occurrences exhibit convective instability and deep vertical motion, suggesting that the feature trackers and reanalysis are capturing physics relevant to both convective and frontal systems. The results here emphasize the need for simultaneous identifications of multiple features when attributing precipitation to atmospheric phenomena.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041687","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041687","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Object-based identification algorithms for atmospheric features are commonly utilized to attribute global precipitation. This study employs a systematic approach to examine feature co-occurrences and their relationships to mean and extreme precipitation. Four features are identified using existing data sets for atmospheric rivers (ARs), mesoscale convective systems (MCSs), low-pressure systems (LPSs), and fronts (FTs). Often, a single atmospheric phenomenon satisfies the criteria set by multiple feature identification algorithms, yielding an association between precipitation and multiple features. Over the extra-tropics, the number of features attributed to a single event typically increases with precipitation intensity. Over two-thirds of the precipitation is from co-occurring features, with a considerable fraction related to AR-FT co-occurrences. Over the tropics, about one-quarter of precipitation is associated with co-occurring features, with LPS-MCS co-occurrences contributing substantially in monsoon regions. MCSs are the leading single-feature contributors over tropical land and oceans. In the extra-tropics, FTs, ARs, and their co-occurrences account for over half of the total precipitation over oceans. AR-FT-MCS and FT-MCS co-occurrences contribute to extremes (precipitation exceeding the 95th percentile) over both oceans (over 30%) and land (over 20%). Any combination of features involving MCSs shows a larger contribution to high percentiles of precipitation intensity. A case analysis indicates that AR-FT-MCS co-occurrences exhibit convective instability and deep vertical motion, suggesting that the feature trackers and reanalysis are capturing physics relevant to both convective and frontal systems. The results here emphasize the need for simultaneous identifications of multiple features when attributing precipitation to atmospheric phenomena.
期刊介绍:
JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.