De novo missense variants in the RPEL3 domain of PHACTR4 in individuals with overlapping congenital anomalies.

IF 3.3 Q2 GENETICS & HEREDITY HGG Advances Pub Date : 2025-02-25 DOI:10.1016/j.xhgg.2025.100421
Erin Torti, Sureni V Mullegama, Isabelle De Bie, Angelique Mercier, Deanna Alexis Carere, Leandra Folk, Jane Juusola, Kristin G Monaghan, Ingrid M Wentzensen, Olivia L Redlich, Adi Reich, Bobbi McGivern
{"title":"De novo missense variants in the RPEL3 domain of PHACTR4 in individuals with overlapping congenital anomalies.","authors":"Erin Torti, Sureni V Mullegama, Isabelle De Bie, Angelique Mercier, Deanna Alexis Carere, Leandra Folk, Jane Juusola, Kristin G Monaghan, Ingrid M Wentzensen, Olivia L Redlich, Adi Reich, Bobbi McGivern","doi":"10.1016/j.xhgg.2025.100421","DOIUrl":null,"url":null,"abstract":"<p><p>PHACTR4 is proposed to play a role in embryonic development but has yet to be associated with human disease. Here we report the detailed clinical features of two individuals for whom molecular diagnostic testing was undertaken at a large diagnostic laboratory and who were found to harbor rare, damaging de novo missense variants in the conserved RPEL3 domain of PHACTR4. We also present aggregate information on additional individuals in whom missense variants in the same PHACTR4 gene region were detected. All presented with overlapping phenotypes. Features present in at least half of these individuals included cleft palate, ophthalmologic abnormalities, hearing impairment, dysmorphic facial features, digital anomalies, renal/urinary anomalies, growth delay, microcephaly, abnormal brain imaging, and neurodevelopmental abnormalities; some individuals had additional unique findings as well. The proposed cellular function of PHACTR4 and information from related genes with variants in a RPEL domain suggest that PHACTR4 is a promising candidate gene for human disease. We hope that this report will promote additional research interest in the PHACTR4 gene and lead to the publication of additional cases, to potentially establish a causative relationship and to further delineate the phenotypic and variant spectrum of a PHACTR4-related disorder.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100421"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

PHACTR4 is proposed to play a role in embryonic development but has yet to be associated with human disease. Here we report the detailed clinical features of two individuals for whom molecular diagnostic testing was undertaken at a large diagnostic laboratory and who were found to harbor rare, damaging de novo missense variants in the conserved RPEL3 domain of PHACTR4. We also present aggregate information on additional individuals in whom missense variants in the same PHACTR4 gene region were detected. All presented with overlapping phenotypes. Features present in at least half of these individuals included cleft palate, ophthalmologic abnormalities, hearing impairment, dysmorphic facial features, digital anomalies, renal/urinary anomalies, growth delay, microcephaly, abnormal brain imaging, and neurodevelopmental abnormalities; some individuals had additional unique findings as well. The proposed cellular function of PHACTR4 and information from related genes with variants in a RPEL domain suggest that PHACTR4 is a promising candidate gene for human disease. We hope that this report will promote additional research interest in the PHACTR4 gene and lead to the publication of additional cases, to potentially establish a causative relationship and to further delineate the phenotypic and variant spectrum of a PHACTR4-related disorder.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
期刊最新文献
Circadian Rhythm Defects in Prader-Willi Syndrome Neurons. Transcriptome-wide analyses delineate the genetic architecture of expression variation in atopic dermatitis. De novo missense variants in the RPEL3 domain of PHACTR4 in individuals with overlapping congenital anomalies. Revisiting Variation in the Somatic Mutation Landscape of Non-Small Cell Lung Cancer. Male proband with intractable seizures and a de novo start codon disrupting variant in GLUL.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1