William E A Sheppard, Rachel O Coats, Richard M Wilkie, Rigmor C Baraas
{"title":"Monocular blur impairs heading judgements from optic flow.","authors":"William E A Sheppard, Rachel O Coats, Richard M Wilkie, Rigmor C Baraas","doi":"10.1177/20416695251317148","DOIUrl":null,"url":null,"abstract":"<p><p>Monocular blur sometimes impairs locomotion; however, it is not always clear when this will happen. Optic flow (the apparent motion of scene texture elements that occurs during self-motion) provides powerful signals about the direction of travel. Here, we test whether monocular blur impairs heading perception from optic flow compared to full vision under various levels of optic flow degradation. Participants (<i>N</i> = 52, mean age = 30 years) completed contrast sensitivity, visual acuity, and heading perception tasks with rich or degraded optic flow, with or without monocular blur (0.4 logMAR Bangerter filter over the non-dominant eye, full vision in the dominant eye). Heading perception was assessed using a browser-based task where the participants viewed a 3-second video consistent with self-motion over a textured ground plane (moving towards the horizon at an offset heading ranging from -20 to +20°) and identified the point on the horizon towards which they were travelling. The measures of each participant's performance were the absolute and directional angular error between the heading offset and their response. Monocular blur and degraded flow were associated with an increase in absolute heading error and a larger underestimation of heading angle, with the worst performance observed when monocular blur and degraded flow were combined. These results suggest that the impact of monocular blur on heading perception becomes apparent only when optic flow signals are weak (e.g., night-time driving). These findings support the theory that monocular blur and the richness of visual information interact to produce deficits in heading perception.</p>","PeriodicalId":47194,"journal":{"name":"I-Perception","volume":"16 1","pages":"20416695251317148"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"I-Perception","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/20416695251317148","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monocular blur sometimes impairs locomotion; however, it is not always clear when this will happen. Optic flow (the apparent motion of scene texture elements that occurs during self-motion) provides powerful signals about the direction of travel. Here, we test whether monocular blur impairs heading perception from optic flow compared to full vision under various levels of optic flow degradation. Participants (N = 52, mean age = 30 years) completed contrast sensitivity, visual acuity, and heading perception tasks with rich or degraded optic flow, with or without monocular blur (0.4 logMAR Bangerter filter over the non-dominant eye, full vision in the dominant eye). Heading perception was assessed using a browser-based task where the participants viewed a 3-second video consistent with self-motion over a textured ground plane (moving towards the horizon at an offset heading ranging from -20 to +20°) and identified the point on the horizon towards which they were travelling. The measures of each participant's performance were the absolute and directional angular error between the heading offset and their response. Monocular blur and degraded flow were associated with an increase in absolute heading error and a larger underestimation of heading angle, with the worst performance observed when monocular blur and degraded flow were combined. These results suggest that the impact of monocular blur on heading perception becomes apparent only when optic flow signals are weak (e.g., night-time driving). These findings support the theory that monocular blur and the richness of visual information interact to produce deficits in heading perception.