Comparative analysis of shear behavior in continuous low-strength RC beams strengthened with BFRP and CFRP: An experimental and numerical investigation

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2025-03-01 DOI:10.1016/j.jcomc.2025.100575
Mu'tasim Abdel-Jaber , Rawand Al-Nsour , Aseel Almahameed , Ahmed Ashteyat
{"title":"Comparative analysis of shear behavior in continuous low-strength RC beams strengthened with BFRP and CFRP: An experimental and numerical investigation","authors":"Mu'tasim Abdel-Jaber ,&nbsp;Rawand Al-Nsour ,&nbsp;Aseel Almahameed ,&nbsp;Ahmed Ashteyat","doi":"10.1016/j.jcomc.2025.100575","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of Basalt Fiber-Reinforced Polymer (BFRP) materials marks a significant advancement in sustainable construction. This study evaluates the impact of externally bonded BFRP and Carbon Fiber-Reinforced Polymer (CFRP) sheets and laminates on the shear strength of reinforced concrete (RC) beams with a compressive strength of 20 MPa. Seven full-scale, two-span RC beams, each four meters in length, were tested, with identical strengthening patterns applied to both BFRP and CFRP sheets to allow for a direct comparison. One beam served as a control sample to assess the effectiveness of the strengthening techniques. Results showed that CFRP improved the shear capacity of the beams by 38.3 % to 46.6 %, while BFRP provided an increase of 9.7 % to 32.5 %, demonstrating substantial gains in load-carrying capacity for both materials, though CFRP showed a higher performance boost while BFRP materials are an economical alternative for CFRP materials, and the most effective strengthening configuration for both fiber types is full side coverage, as it offers superior confinement of the concrete. These findings were well-aligned with Finite Element Modeling predictions and theoretical expectations, closely matching ACI 440.2R-08 guidelines.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100575"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Basalt Fiber-Reinforced Polymer (BFRP) materials marks a significant advancement in sustainable construction. This study evaluates the impact of externally bonded BFRP and Carbon Fiber-Reinforced Polymer (CFRP) sheets and laminates on the shear strength of reinforced concrete (RC) beams with a compressive strength of 20 MPa. Seven full-scale, two-span RC beams, each four meters in length, were tested, with identical strengthening patterns applied to both BFRP and CFRP sheets to allow for a direct comparison. One beam served as a control sample to assess the effectiveness of the strengthening techniques. Results showed that CFRP improved the shear capacity of the beams by 38.3 % to 46.6 %, while BFRP provided an increase of 9.7 % to 32.5 %, demonstrating substantial gains in load-carrying capacity for both materials, though CFRP showed a higher performance boost while BFRP materials are an economical alternative for CFRP materials, and the most effective strengthening configuration for both fiber types is full side coverage, as it offers superior confinement of the concrete. These findings were well-aligned with Finite Element Modeling predictions and theoretical expectations, closely matching ACI 440.2R-08 guidelines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Impact of internal pressure control during manufacturing on residual stresses and safety performance of type 4 pressure vessels Mechanical performance of aluminum/copper/aluminum nanocomposite at different temperatures using molecular dynamics simulation Planar fibre winding for topological optimized composite structures Comparative analysis of shear behavior in continuous low-strength RC beams strengthened with BFRP and CFRP: An experimental and numerical investigation Optimal selection of composite layup considering the fuselage crashworthiness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1