Freddie Theland , Geert Lombaert , Stijn François , Abbas Zangeneh , Fanny Deckner , Jean-Marc Battini
{"title":"Measurements and predictions of vibration response of end-bearing pile group in soft clay due to vertical ground surface load","authors":"Freddie Theland , Geert Lombaert , Stijn François , Abbas Zangeneh , Fanny Deckner , Jean-Marc Battini","doi":"10.1016/j.engstruct.2025.119932","DOIUrl":null,"url":null,"abstract":"<div><div>Ground-borne vibration from roads or railways is a growing concern in the planning of new buildings in urban environments. Vibration assessment is often based on initial measurements of the free field vibrations to estimate building vibrations by either empirical or numerical procedures. Dynamic interaction between the soil and the foundation has an important influence on the transmitted vibrations, especially for embedded foundations, and should therefore be properly accounted for. This paper presents the results from a series of full-scale field experiments that were performed to characterise the vibration response of an end-bearing pile group foundation in soft clay subjected to a dynamic load applied at the ground surface. Controlled dynamic excitation is applied vertically at the ground surface from 10 and 20 m horizontal distance using an electrodynamic inertial shaker. Accelerations are measured at different construction stages: prior to construction, after driving of the piles and after completion of the pile cap. Predictions from a numerical model and from a hybrid method utilising measurement data acquired in an earlier construction stage are both validated with the data from the field tests. The results indicate that the relationship between the amplitudes of the vertical foundation and free field responses are insensitive to source–receiver distance. It is also found that pile–soil–pile interaction has an important influence on the vertical response of the piles.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"331 ","pages":"Article 119932"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029625003220","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Ground-borne vibration from roads or railways is a growing concern in the planning of new buildings in urban environments. Vibration assessment is often based on initial measurements of the free field vibrations to estimate building vibrations by either empirical or numerical procedures. Dynamic interaction between the soil and the foundation has an important influence on the transmitted vibrations, especially for embedded foundations, and should therefore be properly accounted for. This paper presents the results from a series of full-scale field experiments that were performed to characterise the vibration response of an end-bearing pile group foundation in soft clay subjected to a dynamic load applied at the ground surface. Controlled dynamic excitation is applied vertically at the ground surface from 10 and 20 m horizontal distance using an electrodynamic inertial shaker. Accelerations are measured at different construction stages: prior to construction, after driving of the piles and after completion of the pile cap. Predictions from a numerical model and from a hybrid method utilising measurement data acquired in an earlier construction stage are both validated with the data from the field tests. The results indicate that the relationship between the amplitudes of the vertical foundation and free field responses are insensitive to source–receiver distance. It is also found that pile–soil–pile interaction has an important influence on the vertical response of the piles.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.