Ethanol causes rapid decreases in the hepatic retinoid levels shaping the early steps of alcohol-associated liver disease.

IF 3 Q2 SUBSTANCE ABUSE Alcohol (Hanover, York County, Pa.) Pub Date : 2025-02-27 DOI:10.1111/acer.70011
Xiao-Han Tang, Glen Pesola, Qiuying Chen, Dawson Miller, Laura E Nagy, Megan R McMullen, Robert E Schwartz, Sergey Tsoy, Christine Lim, Shireen Chikara, Steven S Gross, Steven E Trasino, Lorraine J Gudas, Marta Melis
{"title":"Ethanol causes rapid decreases in the hepatic retinoid levels shaping the early steps of alcohol-associated liver disease.","authors":"Xiao-Han Tang, Glen Pesola, Qiuying Chen, Dawson Miller, Laura E Nagy, Megan R McMullen, Robert E Schwartz, Sergey Tsoy, Christine Lim, Shireen Chikara, Steven S Gross, Steven E Trasino, Lorraine J Gudas, Marta Melis","doi":"10.1111/acer.70011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic alcohol drinking causes hepatic vitamin A (retinoids and derivatives) decreases, which correlate with the progression and severity of alcohol-associated liver disease (ALD). However, the effects of short-term ethanol (EtOH) intake on liver retinoids and ALD are still undefined.</p><p><strong>Methods: </strong>Using high-performance liquid chromatography and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC, HPLC-MS/MS), and molecular biology techniques in mice and cultured human hepatocytes, we investigated the temporal EtOH effects on retinoids and ALD.</p><p><strong>Results: </strong>In female and male mice, acute EtOH intake caused hepatic retinol (ROL) and retinyl palmitate (RP) decreases within hours, whereas it did not significantly change the retinoic acid (RA) levels, and those of the RA catabolism metabolite, 4-oxo-RA. After EtOH withdrawal, the liver recovered the ROL and RP levels within 48 h, whereas RA and 4-oxo-RA levels remained almost undetectable by this time point. Compared with control diet-fed mice, hepatic ROL and RP levels remained decreased in the 10-day and 3-week-long EtOH treatments, while retinyl oleate and linoleate increased. Interestingly, some of the RA signaling receptors, Rarβ, along with Cyp26a1, revealed dramatic transcript increases during the 10-day-long experiments that attenuated over time (up to 8 weeks), reflecting impaired RA signaling. Our work also showed that primary human hepatocytes serve as a model to better define the role of EtOH in retinoid biology.</p><p><strong>Conclusions: </strong>This work reveals that acute and short-term exposures to EtOH disrupt retinoid homeostasis, identifying key events in the early pathogenesis of ALD.</p>","PeriodicalId":72145,"journal":{"name":"Alcohol (Hanover, York County, Pa.)","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alcohol (Hanover, York County, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/acer.70011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SUBSTANCE ABUSE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chronic alcohol drinking causes hepatic vitamin A (retinoids and derivatives) decreases, which correlate with the progression and severity of alcohol-associated liver disease (ALD). However, the effects of short-term ethanol (EtOH) intake on liver retinoids and ALD are still undefined.

Methods: Using high-performance liquid chromatography and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC, HPLC-MS/MS), and molecular biology techniques in mice and cultured human hepatocytes, we investigated the temporal EtOH effects on retinoids and ALD.

Results: In female and male mice, acute EtOH intake caused hepatic retinol (ROL) and retinyl palmitate (RP) decreases within hours, whereas it did not significantly change the retinoic acid (RA) levels, and those of the RA catabolism metabolite, 4-oxo-RA. After EtOH withdrawal, the liver recovered the ROL and RP levels within 48 h, whereas RA and 4-oxo-RA levels remained almost undetectable by this time point. Compared with control diet-fed mice, hepatic ROL and RP levels remained decreased in the 10-day and 3-week-long EtOH treatments, while retinyl oleate and linoleate increased. Interestingly, some of the RA signaling receptors, Rarβ, along with Cyp26a1, revealed dramatic transcript increases during the 10-day-long experiments that attenuated over time (up to 8 weeks), reflecting impaired RA signaling. Our work also showed that primary human hepatocytes serve as a model to better define the role of EtOH in retinoid biology.

Conclusions: This work reveals that acute and short-term exposures to EtOH disrupt retinoid homeostasis, identifying key events in the early pathogenesis of ALD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Exploring the impact of graded alcohol use on atherogenic lipid profiles among Latinos with underlying chronic liver disease. Ethanol causes rapid decreases in the hepatic retinoid levels shaping the early steps of alcohol-associated liver disease. Alcohol consumption and childhood trauma impact serum immunoglobulin levels in patients with alcohol use disorder. Content analysis of substance use disorder recovery discourse on Twitter: From personal recovery narratives to marketing of addiction treatment. Developing and testing health warnings about alcohol and risk for breast cancer: Results from a national experiment with young adult women in the United States.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1