Transcriptomic insights into the low-salinity tolerance of the sea louse Caligus elongatus.

Andreas Borchel, Frank Nilsen
{"title":"Transcriptomic insights into the low-salinity tolerance of the sea louse Caligus elongatus.","authors":"Andreas Borchel, Frank Nilsen","doi":"10.1007/s00360-025-01606-3","DOIUrl":null,"url":null,"abstract":"<p><p>Caligus elongatus is a marine copepod ectoparasite on a wide variety of fish species. It has also been observed on fish farms cultivating Atlantic salmon and reports shows that this parasite can be a problem for the industry and for the fish's welfare. Freshwater is used as one of the non-medical treatment methods against the salmon louse (Lepeophtheirus salmonis). However, the efficacy of freshwater treatment against C. elongatus is still unknown. This study aims to fill this gap by examining the salinity tolerance limits of both adult and copepodid life stages of C. elongatus. Our findings reveal that detached adult C. elongatus exhibit low tolerance to reduced salinity, with mortality occurring within hours at salinities below 20 ppt. In contrast, copepodid stages demonstrated a slightly higher tolerance, surviving at salinities as low as 15 ppt for one day. Adult lice attached to a host quickly detached from the fish as soon as the salinity was lower than 20 ppt, suggesting that freshwater delousing might be effective in this species. To further understand the genetic basis of acclimation to reduced salinities, we performed RNA-sequencing to assemble the first transcriptome of this species and identify differentially expressed genes. Several genes regulated upon low-salinity transfer were identified. These include genes involved in proline metabolism, energy metabolism, and the transport of various ions and betaine, an osmolyte. The potential roles of these genes in salinity acclimation are discussed within an evolutionary context, providing valuable insights into the survival mechanisms of C. elongatus under low-salinity conditions.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-025-01606-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Caligus elongatus is a marine copepod ectoparasite on a wide variety of fish species. It has also been observed on fish farms cultivating Atlantic salmon and reports shows that this parasite can be a problem for the industry and for the fish's welfare. Freshwater is used as one of the non-medical treatment methods against the salmon louse (Lepeophtheirus salmonis). However, the efficacy of freshwater treatment against C. elongatus is still unknown. This study aims to fill this gap by examining the salinity tolerance limits of both adult and copepodid life stages of C. elongatus. Our findings reveal that detached adult C. elongatus exhibit low tolerance to reduced salinity, with mortality occurring within hours at salinities below 20 ppt. In contrast, copepodid stages demonstrated a slightly higher tolerance, surviving at salinities as low as 15 ppt for one day. Adult lice attached to a host quickly detached from the fish as soon as the salinity was lower than 20 ppt, suggesting that freshwater delousing might be effective in this species. To further understand the genetic basis of acclimation to reduced salinities, we performed RNA-sequencing to assemble the first transcriptome of this species and identify differentially expressed genes. Several genes regulated upon low-salinity transfer were identified. These include genes involved in proline metabolism, energy metabolism, and the transport of various ions and betaine, an osmolyte. The potential roles of these genes in salinity acclimation are discussed within an evolutionary context, providing valuable insights into the survival mechanisms of C. elongatus under low-salinity conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
期刊最新文献
Transcriptomic insights into the low-salinity tolerance of the sea louse Caligus elongatus. Thermal sensitivity of respiration and ROS emission of muscle mitochondria in deer mice. Effect of housing density on cellular and humoral immunity, hematology in striped hamsters. A first glimpse into circulating ghrelin patterns of thin-billed prion chicks (Pachyptila belcheri). Apneic uptake of atmospheric O2 by deeply hypothermic nestlings of the white-footed mouse (Peromyscus leucopus): circulation and lungs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1