Tian Dong, Xingyu Jia, Yujing He, Phatham Loahavilai, Yueyang Liu, Haifeng Hu, Lihua Xu, Le Zhao, Weiguo Chu, Guanhao Wu, Yang Li
{"title":"Nanophotonic Zero-Index-Material-Enabled Optical Coherent Interferometry with High Signal-to-Noise Ratio","authors":"Tian Dong, Xingyu Jia, Yujing He, Phatham Loahavilai, Yueyang Liu, Haifeng Hu, Lihua Xu, Le Zhao, Weiguo Chu, Guanhao Wu, Yang Li","doi":"10.1021/acs.nanolett.4c06421","DOIUrl":null,"url":null,"abstract":"Optical interferometry enables distance measurement with record-high precision. However, the conventional interference intensity shows fast spatial variations, limiting photodetection to a single spot. The light intensity at this spot is affected by various noises, restricting the signal-to-noise ratio (SNR) of a coherent system. Here, we generate uniform interference patterns based on zero-index metawaveguides, enabling the photodetection of spatially extended intensity through multiple-pixel measurements of a charge-coupled device. Averaging the intensities measured across multiple pixels cancels uncorrelated noise, significantly improving the SNR and allowing the detection of weakly reflected optical power. Experiments show that nanoscale displacements down to 26 nm (<i>λ</i><sub>0</sub>/59) can be converted into high-contrast intensity changes over a macroscopic area, leading to an SNR 10+ times higher (11.68 dB) than that of conventional single-spot photodetection. Our nanophotonic zero-index platform can be implemented in any coherent system, possibly leading to a transformative impact in precise measurement of the distance, profile, and spectrum.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"16 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06421","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical interferometry enables distance measurement with record-high precision. However, the conventional interference intensity shows fast spatial variations, limiting photodetection to a single spot. The light intensity at this spot is affected by various noises, restricting the signal-to-noise ratio (SNR) of a coherent system. Here, we generate uniform interference patterns based on zero-index metawaveguides, enabling the photodetection of spatially extended intensity through multiple-pixel measurements of a charge-coupled device. Averaging the intensities measured across multiple pixels cancels uncorrelated noise, significantly improving the SNR and allowing the detection of weakly reflected optical power. Experiments show that nanoscale displacements down to 26 nm (λ0/59) can be converted into high-contrast intensity changes over a macroscopic area, leading to an SNR 10+ times higher (11.68 dB) than that of conventional single-spot photodetection. Our nanophotonic zero-index platform can be implemented in any coherent system, possibly leading to a transformative impact in precise measurement of the distance, profile, and spectrum.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.