Defect-Modulated MOF Nanochannels for the Quasi-Solid-State Electrolyte of a Dendrite-Free Lithium Metal Battery

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-03-02 DOI:10.1021/acs.nanolett.4c05596
Jialong Jiang, Runhao Zhang, Jiachen Guo, Shiqi Zhang, Xiangtai Min, Ziyang Liu, Ning Liu, Dapeng Cao, Jun Xu, Peng Cheng, Wei Shi
{"title":"Defect-Modulated MOF Nanochannels for the Quasi-Solid-State Electrolyte of a Dendrite-Free Lithium Metal Battery","authors":"Jialong Jiang, Runhao Zhang, Jiachen Guo, Shiqi Zhang, Xiangtai Min, Ziyang Liu, Ning Liu, Dapeng Cao, Jun Xu, Peng Cheng, Wei Shi","doi":"10.1021/acs.nanolett.4c05596","DOIUrl":null,"url":null,"abstract":"Efficient and selective Li<sup>+</sup> transport within the nanochannel is essential for high-performance solid-state electrolytes (SSEs) in lithium metal batteries. Introducing Li<sup>+</sup> hopping sites into SSEs shows great potential for promoting Li<sup>+</sup> transport; however, it typically reduces the Li<sup>+</sup> transport nanochannel size, consequently increasing the energy barrier for Li<sup>+</sup> transport. Herein, we present a molecular defect strategy for MOFs to introduce Li<sup>+</sup> hopping sites and increase the nanochannel size simultaneously as quasi-solid-state electrolytes (QSSEs). Compared with the defect-free Li@UiO-66-based QSSE, the optimized Li@UiO-66-D2-based QSSE exhibits a remarkable 343% enhancement in Li<sup>+</sup> conductivity and improved Li<sup>+</sup> selectivity. Furthermore, the 9 cm × 6 cm Li|Li@UiO-66-D2|LFP pouch cell exhibits excellent cycling performance with high capacity retention. An in-depth mechanism study has unveiled the significant impact of both hopping sites and nanochannel size on Li<sup>+</sup> transport, emphasizing the importance of a molecular defect strategy in enhancing the overall Li<sup>+</sup> transport performance of MOF-based QSSEs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"1 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05596","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and selective Li+ transport within the nanochannel is essential for high-performance solid-state electrolytes (SSEs) in lithium metal batteries. Introducing Li+ hopping sites into SSEs shows great potential for promoting Li+ transport; however, it typically reduces the Li+ transport nanochannel size, consequently increasing the energy barrier for Li+ transport. Herein, we present a molecular defect strategy for MOFs to introduce Li+ hopping sites and increase the nanochannel size simultaneously as quasi-solid-state electrolytes (QSSEs). Compared with the defect-free Li@UiO-66-based QSSE, the optimized Li@UiO-66-D2-based QSSE exhibits a remarkable 343% enhancement in Li+ conductivity and improved Li+ selectivity. Furthermore, the 9 cm × 6 cm Li|Li@UiO-66-D2|LFP pouch cell exhibits excellent cycling performance with high capacity retention. An in-depth mechanism study has unveiled the significant impact of both hopping sites and nanochannel size on Li+ transport, emphasizing the importance of a molecular defect strategy in enhancing the overall Li+ transport performance of MOF-based QSSEs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在锂金属电池的高性能固态电解质(SSE)中,纳米通道内高效和选择性的 Li+ 传输至关重要。在固态电解质中引入 Li+ 跳跃位点显示出促进 Li+ 输运的巨大潜力;然而,这通常会减小 Li+ 输运纳米通道的尺寸,从而增加 Li+ 输运的能量障碍。在此,我们提出了一种分子缺陷策略,即在 MOFs 中引入 Li+ 跳跃位点,同时增大纳米通道尺寸,使其成为准固态电解质(QSSEs)。与无缺陷的基于 Li@UiO-66 的 QSSE 相比,优化的基于 Li@UiO-66-D2 的 QSSE 的 Li+ 电导率显著提高了 343%,Li+ 选择性也得到了改善。此外,9 cm × 6 cm Li|Li@UiO-66-D2|LFP 袋式电池表现出优异的循环性能和高容量保持率。深入的机理研究揭示了跳跃位点和纳米通道尺寸对 Li+ 传输的重要影响,强调了分子缺陷策略在提高基于 MOF 的 QSSE 的整体 Li+ 传输性能方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Nanophotonic Zero-Index-Material-Enabled Optical Coherent Interferometry with High Signal-to-Noise Ratio Direct Visualization of the Impurity Occupancy Road Map in Ni-Substituted van der Waals Ferromagnet Fe3GaTe2 Heteroatom Doping Effects on the Exciton Behavior in Carbonized Polymer Dots Revealing Atomistic Ion Migration Pathways of Orientation-Dependent Long-Range Cu+ Ion Migration in β-Cu2Se Defect-Modulated MOF Nanochannels for the Quasi-Solid-State Electrolyte of a Dendrite-Free Lithium Metal Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1