{"title":"Direct Visualization of the Impurity Occupancy Road Map in Ni-Substituted van der Waals Ferromagnet Fe3GaTe2","authors":"Jian Yuan, Haonan Wang, Xiaofei Hou, Binshuo Zhang, Yurui Wei, Jiangteng Guo, Lu Sun, Zhenhai Yu, Xiangqi Liu, Wei Xia, Xia Wang, Xuerong Liu, Yulin Chen, Shihao Zhang, Xuewen Fu, Ke Qu, Zhenzhong Yang, Yanfeng Guo","doi":"10.1021/acs.nanolett.4c05811","DOIUrl":null,"url":null,"abstract":"Impurity substitution is effective for studying the intrinsic properties of a quantum material. When the target element has multiple Wyckoff positions, it is challenging but essential to know the exact position and occupancy order of the impurity atoms. Via comprehensive experimental and theoretical investigations, we establish the Ni substitution road map in van der Waals ferromagnet Fe<sub>3</sub>GaTe<sub>2</sub>. The results unambiguously reveal that in (Fe<sub>1–<i>x</i></sub>Ni<sub><i>x</i></sub>)<sub>3</sub>GaTe<sub>2</sub>, Ni atoms initially form interlayer gap Ni3 sites when <i>x</i> < 0.1 and then gradually occupy Fe2 sites. When <i>x</i> > 0.75, they start to substitute for Fe1 sites and eventually realize full occupation. Accordingly, <i>T</i><sub>C</sub> and saturation moments both show nonlinear decreases tied to the different roles of Ni3, Fe1, and Fe2 sites in the spin Hamiltonian. The results not only yield fruitful insights into the roles of different Fe sites in Fe<sub>3</sub>GaTe<sub>2</sub> but also set a paradigm for the future study of impurity substitution on other quantum materials.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"2 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05811","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Impurity substitution is effective for studying the intrinsic properties of a quantum material. When the target element has multiple Wyckoff positions, it is challenging but essential to know the exact position and occupancy order of the impurity atoms. Via comprehensive experimental and theoretical investigations, we establish the Ni substitution road map in van der Waals ferromagnet Fe3GaTe2. The results unambiguously reveal that in (Fe1–xNix)3GaTe2, Ni atoms initially form interlayer gap Ni3 sites when x < 0.1 and then gradually occupy Fe2 sites. When x > 0.75, they start to substitute for Fe1 sites and eventually realize full occupation. Accordingly, TC and saturation moments both show nonlinear decreases tied to the different roles of Ni3, Fe1, and Fe2 sites in the spin Hamiltonian. The results not only yield fruitful insights into the roles of different Fe sites in Fe3GaTe2 but also set a paradigm for the future study of impurity substitution on other quantum materials.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.