{"title":"Comparative studies of C4F7N-based gas mixtures as the eco-friendly alternative to SF6 for interrupting applications","authors":"Wen Wang, Xianglian Yan, Hao Wang, Keli Gao","doi":"10.1049/hve2.70003","DOIUrl":null,"url":null,"abstract":"<p>To comprehensively evaluate the feasibility of using C<sub>4</sub>F<sub>7</sub>N-based gas mixture as arc extinguishing medium, a comparative study is performed on the variations of the multi-physical fields, gas flow environment and decomposition characteristics of the gas mixtures. A modified theoretical basis of the arc model developed for the C<sub>4</sub>F<sub>7</sub>N-based gas mixture is presented in the work with particular emphasis on the non-recombination features of C<sub>4</sub>F<sub>7</sub>N. This work also experimentally studies the electrical characteristics of the gas medium and the monitored parameters are also used to calibrate the arc model. The amount change of the seven dominant decomposing by-products is analysed as well. The results present that the C<sub>4</sub>F<sub>7</sub>N/CO<sub>2</sub>/O<sub>2</sub> ternary gas mixture exhibits a more promising interrupting performance. Increasing the O<sub>2</sub> concentration from 5% to 10% has less effects on the arc characteristics, but it could suppress the formation of CO. The arc behaviour of C<sub>4</sub>F<sub>7</sub>N/CO<sub>2</sub>/O<sub>2</sub> gas mixture is also improved with increasing the velocity of the moving components. The findings provide important insights into the potential of C<sub>4</sub>F<sub>7</sub>N-based gas mixtures as one of the sustainable and effective solutions for high-voltage interrupting applications.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"228-242"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.70003","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To comprehensively evaluate the feasibility of using C4F7N-based gas mixture as arc extinguishing medium, a comparative study is performed on the variations of the multi-physical fields, gas flow environment and decomposition characteristics of the gas mixtures. A modified theoretical basis of the arc model developed for the C4F7N-based gas mixture is presented in the work with particular emphasis on the non-recombination features of C4F7N. This work also experimentally studies the electrical characteristics of the gas medium and the monitored parameters are also used to calibrate the arc model. The amount change of the seven dominant decomposing by-products is analysed as well. The results present that the C4F7N/CO2/O2 ternary gas mixture exhibits a more promising interrupting performance. Increasing the O2 concentration from 5% to 10% has less effects on the arc characteristics, but it could suppress the formation of CO. The arc behaviour of C4F7N/CO2/O2 gas mixture is also improved with increasing the velocity of the moving components. The findings provide important insights into the potential of C4F7N-based gas mixtures as one of the sustainable and effective solutions for high-voltage interrupting applications.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf