Joana Cunha , Eloah Latocheski , Ana Carolina Domingues Fidalgo , Adriana Passarella Gerola , Camila Fabiano de Freitas Marin , António José Ribeiro
{"title":"Core-shell hybrid liposomes: Transforming imaging diagnostics and therapeutic strategies","authors":"Joana Cunha , Eloah Latocheski , Ana Carolina Domingues Fidalgo , Adriana Passarella Gerola , Camila Fabiano de Freitas Marin , António José Ribeiro","doi":"10.1016/j.colsurfb.2025.114597","DOIUrl":null,"url":null,"abstract":"<div><div>For the last few years, researchers and industry have intensified efforts to develop a diverse array of diagnostic and therapeutic approaches to fight diseases such as cancer, diabetes, and viral infections. Among the emerging technologies, hybrid liposomes (HLs) stand out for their ability to address key limitations of conventional liposomes and deliver multifunctional solutions more effectively. While several novel nanosystems, including polymer<img>lipid conjugates and inorganic nanoparticles (NPs), have shown great potential in the preclinical and clinical phases for the diagnosis and treatment of diseases, particularly cancer, HLs can integrate the best of both worlds, combining drug delivery properties with imaging capabilities.</div><div>HLs, particularly those with core-shell structures, can surpass conventional liposomes by offering improved physicochemical properties, multifunctionality, and the capacity to overcome critical delivery challenges. The integration of natural and synthetic polymers has rapidly emerged as a preferred strategy in the development of HLs, providing significant advantages, such as enhanced stability, stimuli-responsive drug release, prolonged circulation, and improved therapeutic efficacy. Additionally, the customizable structure of HLs allows the incorporation of diverse materials, such as metals, ligands, and functional lipids, improving diagnosis and enhancing targeted delivery and cellular uptake far beyond what conventional liposomes offer.</div><div>This review provides a critical and updated analysis of core-shell structure exhibiting HLs, with a focus on their preparation, characterization, and functional enhancements. We also examine <em>in vitro/in vivo</em> outcomes in imaging diagnosis and drug delivery while addressing the current barriers to clinical translation and future prospects for these versatile nanoplatforms.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"251 ","pages":"Article 114597"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525001043","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
For the last few years, researchers and industry have intensified efforts to develop a diverse array of diagnostic and therapeutic approaches to fight diseases such as cancer, diabetes, and viral infections. Among the emerging technologies, hybrid liposomes (HLs) stand out for their ability to address key limitations of conventional liposomes and deliver multifunctional solutions more effectively. While several novel nanosystems, including polymerlipid conjugates and inorganic nanoparticles (NPs), have shown great potential in the preclinical and clinical phases for the diagnosis and treatment of diseases, particularly cancer, HLs can integrate the best of both worlds, combining drug delivery properties with imaging capabilities.
HLs, particularly those with core-shell structures, can surpass conventional liposomes by offering improved physicochemical properties, multifunctionality, and the capacity to overcome critical delivery challenges. The integration of natural and synthetic polymers has rapidly emerged as a preferred strategy in the development of HLs, providing significant advantages, such as enhanced stability, stimuli-responsive drug release, prolonged circulation, and improved therapeutic efficacy. Additionally, the customizable structure of HLs allows the incorporation of diverse materials, such as metals, ligands, and functional lipids, improving diagnosis and enhancing targeted delivery and cellular uptake far beyond what conventional liposomes offer.
This review provides a critical and updated analysis of core-shell structure exhibiting HLs, with a focus on their preparation, characterization, and functional enhancements. We also examine in vitro/in vivo outcomes in imaging diagnosis and drug delivery while addressing the current barriers to clinical translation and future prospects for these versatile nanoplatforms.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.