Structural phase transition behavior of tetragonal and orthorhombic SrFeO3-δ and its effects on thermal expansion and electrical conduction properties

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2025-03-03 DOI:10.1016/j.ssi.2024.116768
Taizo Yoshino, Shiho Hatano, Takayuki Sugimoto, Kosuke Shido, Takuya Hashimoto
{"title":"Structural phase transition behavior of tetragonal and orthorhombic SrFeO3-δ and its effects on thermal expansion and electrical conduction properties","authors":"Taizo Yoshino,&nbsp;Shiho Hatano,&nbsp;Takayuki Sugimoto,&nbsp;Kosuke Shido,&nbsp;Takuya Hashimoto","doi":"10.1016/j.ssi.2024.116768","DOIUrl":null,"url":null,"abstract":"<div><div>Oxides with a high concentration of oxide-ion vacancies and high degree of crystal symmetry have attracted interest as high oxide-ion or hole and oxide-ion mixed conductors. For development of new oxide or mixed conductors, the structural phase transition of SrFeO<sub>3-<em>δ</em></sub> from tetragonal or orthorhombic perovskite with an ordered arrangement of oxide-ion vacancies to cubic perovskite with a random arrangement of oxide-ion vacancies was investigated via thermogravimetric-differential thermal analysis and X-ray diffraction at various temperatures. SrFeO<sub>2.87</sub> with tetragonal perovskite underwent the first-order structural phase transition to cubic perovskite without variation of <em>δ</em> at approximately 300 °C as has been frequently reported; however, the first-order structural phase transition of SrFeO<sub>2.75</sub> from orthorhombic to cubic without variation of <em>δ</em> occurred at approximately 420 °C, which was evidenced for the first time in this study. An abrupt increase was noted in both the thermal expansion and electrical conductivity with each phase transition. Our findings related to the effect of the structural phase transition on the thermal expansion and electrical conductivity of two different SrFeO<sub>3-<em>δ</em></sub> systems may guide their application as electrodes in solid oxide fuel cells and gas sensors.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"422 ","pages":"Article 116768"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824003163","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxides with a high concentration of oxide-ion vacancies and high degree of crystal symmetry have attracted interest as high oxide-ion or hole and oxide-ion mixed conductors. For development of new oxide or mixed conductors, the structural phase transition of SrFeO3-δ from tetragonal or orthorhombic perovskite with an ordered arrangement of oxide-ion vacancies to cubic perovskite with a random arrangement of oxide-ion vacancies was investigated via thermogravimetric-differential thermal analysis and X-ray diffraction at various temperatures. SrFeO2.87 with tetragonal perovskite underwent the first-order structural phase transition to cubic perovskite without variation of δ at approximately 300 °C as has been frequently reported; however, the first-order structural phase transition of SrFeO2.75 from orthorhombic to cubic without variation of δ occurred at approximately 420 °C, which was evidenced for the first time in this study. An abrupt increase was noted in both the thermal expansion and electrical conductivity with each phase transition. Our findings related to the effect of the structural phase transition on the thermal expansion and electrical conductivity of two different SrFeO3-δ systems may guide their application as electrodes in solid oxide fuel cells and gas sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
A first-principles research of two-dimensional Sc2N monolayer as an anode material for Na, K, Mg, and Ca ion batteries Ca1−xSrxMnO3−δ granules, pellets, foams: Influence of fabrication conditions and microstructure on oxidation kinetics Advanced battery cathode microstructure analysis through operando synchrotron X-ray tomography and super-resolution deep learning Mixed-potential NH3 sensor with Fe2(MoO4)3 as the sensing electrode: Performance and mechanistic insights High concentrations of sodium dodecylbenzene sulfonate electrolyte additives improve the performance of aqueous zinc ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1