Advanced battery cathode microstructure analysis through operando synchrotron X-ray tomography and super-resolution deep learning

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2025-03-05 DOI:10.1016/j.ssi.2025.116818
Mohammad Javad Shojaei , Abeiram Sivarajah , Tayeba Safdar , Oxana V. Magdysyuke , Chu Lun Alex Leung , Chun Huang
{"title":"Advanced battery cathode microstructure analysis through operando synchrotron X-ray tomography and super-resolution deep learning","authors":"Mohammad Javad Shojaei ,&nbsp;Abeiram Sivarajah ,&nbsp;Tayeba Safdar ,&nbsp;Oxana V. Magdysyuke ,&nbsp;Chu Lun Alex Leung ,&nbsp;Chun Huang","doi":"10.1016/j.ssi.2025.116818","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium ion batteries are pivotal for clean energy storage and mitigating climate change. In this study, we employ <em>operando</em> synchrotron X-ray computed tomography to investigate the dynamic evolution of battery cathode microstructure. We focus on tracking changes in porosity and pore size distribution at the microscale and cathode thickness at the macroscale during the lithiation and delithiation processes within a commercially configured battery. Image quality was enhanced using both conventional image processing methods and a Super-Resolution Convolutional Neural Network (SRCNN) model. Our findings revealed a slight increase in the cathode solid volume fraction and specific surface area as the battery transitioned from its pristine state to fully lithiated, followed by a reduction during delithiation. This behavior was attributed to the expansion of the cathode material and phase transitions during lithiation, which split larger pores into smaller ones, as evidenced by the increase in surface area. Cathode thickness also exhibited expansion during lithiation and contraction during delithiation. These results offer valuable insights into the structural changes that contribute to battery aging, helping researchers better understand how these different parameters change over time. This understanding is crucial for designing more durable and sustainable batteries in the future, both in terms of specific design and material selection, to enhance resistance during charge and discharge cycles to improve performance and longevity.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"422 ","pages":"Article 116818"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000372","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium ion batteries are pivotal for clean energy storage and mitigating climate change. In this study, we employ operando synchrotron X-ray computed tomography to investigate the dynamic evolution of battery cathode microstructure. We focus on tracking changes in porosity and pore size distribution at the microscale and cathode thickness at the macroscale during the lithiation and delithiation processes within a commercially configured battery. Image quality was enhanced using both conventional image processing methods and a Super-Resolution Convolutional Neural Network (SRCNN) model. Our findings revealed a slight increase in the cathode solid volume fraction and specific surface area as the battery transitioned from its pristine state to fully lithiated, followed by a reduction during delithiation. This behavior was attributed to the expansion of the cathode material and phase transitions during lithiation, which split larger pores into smaller ones, as evidenced by the increase in surface area. Cathode thickness also exhibited expansion during lithiation and contraction during delithiation. These results offer valuable insights into the structural changes that contribute to battery aging, helping researchers better understand how these different parameters change over time. This understanding is crucial for designing more durable and sustainable batteries in the future, both in terms of specific design and material selection, to enhance resistance during charge and discharge cycles to improve performance and longevity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
A first-principles research of two-dimensional Sc2N monolayer as an anode material for Na, K, Mg, and Ca ion batteries Ca1−xSrxMnO3−δ granules, pellets, foams: Influence of fabrication conditions and microstructure on oxidation kinetics Advanced battery cathode microstructure analysis through operando synchrotron X-ray tomography and super-resolution deep learning Mixed-potential NH3 sensor with Fe2(MoO4)3 as the sensing electrode: Performance and mechanistic insights High concentrations of sodium dodecylbenzene sulfonate electrolyte additives improve the performance of aqueous zinc ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1