Han Huang, Jianguang Ma, Hekai Cui, Tiantian Liang, Qingqing Ma
{"title":"Identification of Biomarkers for Cervical Cancer Radiotherapy Sensitivity and Survival Prognosis.","authors":"Han Huang, Jianguang Ma, Hekai Cui, Tiantian Liang, Qingqing Ma","doi":"10.1159/000543409","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Radiotherapy resistance leads to treatment failure and disease progression in patients with cervical cancer. This study aims to elucidate the molecular underpinnings of radiotherapy response in cervical cancer by identifying radiotherapy sensitivity genes (RSGs).</p><p><strong>Methods: </strong>We utilized two GEO expression profiling datasets (GSE3578 and GSE6213) comprising cervical cancer biopsy samples taken before and during radiotherapy to identify differentially expressed genes (DEGs) using the RankProd meta-analysis approach. Subsequent analysis was conducted using data from the TCGA-CESE project to further determine the RSGs and investigate their associations with survival prognosis, immune cell infiltration, and drug sensitivities. The differential expressions of the candidate RSGs were validated in an independent set of cervical cancer patients by qPCRs.</p><p><strong>Results: </strong>A total of 518 DEGs were identified, with 305 genes upregulated and 213 genes down-regulated during radiotherapy. Six key RSGs were identified as significantly associated with radiotherapy response. Cox regression analysis revealed that upregulations of IL1RAP and GPR15 were associated with an increased risk of poor survival prognosis. Functional enrichment analysis highlighted the involvement of these genes in critical biological processes such as cytokine signaling and immune regulation. Correlation analyses demonstrated significant associations between RSG expressions and M2 macrophage and γδT cell abundances in tumor microenvironment, as well as drug sensitivities. The expression of IL1RAP was significantly higher in the complete response group, supporting the bioinformatic finding.</p><p><strong>Conclusion: </strong>Our findings on RSGs could potentially serve as potential biomarkers for predicting radiotherapy response and as therapeutic targets to enhance the efficacy of radiotherapy.</p>","PeriodicalId":19543,"journal":{"name":"Oncology Research and Treatment","volume":" ","pages":"1-14"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology Research and Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000543409","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Radiotherapy resistance leads to treatment failure and disease progression in patients with cervical cancer. This study aims to elucidate the molecular underpinnings of radiotherapy response in cervical cancer by identifying radiotherapy sensitivity genes (RSGs).
Methods: We utilized two GEO expression profiling datasets (GSE3578 and GSE6213) comprising cervical cancer biopsy samples taken before and during radiotherapy to identify differentially expressed genes (DEGs) using the RankProd meta-analysis approach. Subsequent analysis was conducted using data from the TCGA-CESE project to further determine the RSGs and investigate their associations with survival prognosis, immune cell infiltration, and drug sensitivities. The differential expressions of the candidate RSGs were validated in an independent set of cervical cancer patients by qPCRs.
Results: A total of 518 DEGs were identified, with 305 genes upregulated and 213 genes down-regulated during radiotherapy. Six key RSGs were identified as significantly associated with radiotherapy response. Cox regression analysis revealed that upregulations of IL1RAP and GPR15 were associated with an increased risk of poor survival prognosis. Functional enrichment analysis highlighted the involvement of these genes in critical biological processes such as cytokine signaling and immune regulation. Correlation analyses demonstrated significant associations between RSG expressions and M2 macrophage and γδT cell abundances in tumor microenvironment, as well as drug sensitivities. The expression of IL1RAP was significantly higher in the complete response group, supporting the bioinformatic finding.
Conclusion: Our findings on RSGs could potentially serve as potential biomarkers for predicting radiotherapy response and as therapeutic targets to enhance the efficacy of radiotherapy.
期刊介绍:
With the first issue in 2014, the journal ''Onkologie'' has changed its title to ''Oncology Research and Treatment''. By this change, publisher and editor set the scene for the further development of this interdisciplinary journal. The English title makes it clear that the articles are published in English – a logical step for the journal, which is listed in all relevant international databases. For excellent manuscripts, a ''Fast Track'' was introduced: The review is carried out within 2 weeks; after acceptance the papers are published online within 14 days and immediately released as ''Editor’s Choice'' to provide the authors with maximum visibility of their results. Interesting case reports are published in the section ''Novel Insights from Clinical Practice'' which clearly highlights the scientific advances which the report presents.