Wetting behavior of Mo, Ta, and stainless steel substrates in contact with molten Mg

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2025-03-04 DOI:10.1016/j.jma.2025.02.012
S. Terlicka, N. Sobczak, K. Janus, J.J. Sobczak
{"title":"Wetting behavior of Mo, Ta, and stainless steel substrates in contact with molten Mg","authors":"S. Terlicka, N. Sobczak, K. Janus, J.J. Sobczak","doi":"10.1016/j.jma.2025.02.012","DOIUrl":null,"url":null,"abstract":"The sessile drop method combined with a capillary purification procedure was used, for the first time, to analyze the high-temperature behavior of molten Mg on three dissimilar substrates: 1) molybdenum, 2) tantalum and 3) AISI 316L stainless steel. All tests were performed under isothermal conditions at 720°C in a protective atmosphere (Ar + 5 wt% H<sub>2</sub>). Images of Mg/substrate couples recorded during the experiments were used to calculate the contact angles (θ) formed between the liquid Mg drop and the selected substrates.After the sessile drop tests, the Mg/Mo, Mg/Ta, and Mg/AISI 316L couples were subjected to in-depth microstructural characterization using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS).Under the employed experimental conditions, oxide-free Mg drops on all tested couples presented non-wetting behavior (θ &gt; 90°). The average values of the calculated contact angles after 40 s of liquid Mg deposition were θ<sub>Mg/Mo</sub> = 124°, θ<sub>Mg/Ta</sub>= 125°, and θ<sub>Mg/AISI 316L</sub>= 126°, respectively. The SEM/EDS analysis showed no mass transfer and no bonding between solidified drops and the substrates. This non-reactive and non-wetting behavior of investigated couples can be associated with the immiscible nature of the Mg-Mo, Mg-Ta, and Mg-Fe systems, where the solubility of liquid Mg with all tested materials is negligible, and Mg does not form any compounds with them.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"9 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.02.012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The sessile drop method combined with a capillary purification procedure was used, for the first time, to analyze the high-temperature behavior of molten Mg on three dissimilar substrates: 1) molybdenum, 2) tantalum and 3) AISI 316L stainless steel. All tests were performed under isothermal conditions at 720°C in a protective atmosphere (Ar + 5 wt% H2). Images of Mg/substrate couples recorded during the experiments were used to calculate the contact angles (θ) formed between the liquid Mg drop and the selected substrates.After the sessile drop tests, the Mg/Mo, Mg/Ta, and Mg/AISI 316L couples were subjected to in-depth microstructural characterization using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS).Under the employed experimental conditions, oxide-free Mg drops on all tested couples presented non-wetting behavior (θ > 90°). The average values of the calculated contact angles after 40 s of liquid Mg deposition were θMg/Mo = 124°, θMg/Ta= 125°, and θMg/AISI 316L= 126°, respectively. The SEM/EDS analysis showed no mass transfer and no bonding between solidified drops and the substrates. This non-reactive and non-wetting behavior of investigated couples can be associated with the immiscible nature of the Mg-Mo, Mg-Ta, and Mg-Fe systems, where the solubility of liquid Mg with all tested materials is negligible, and Mg does not form any compounds with them.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Spark plasma sintering of a novel Mg-0.7Ca alloy: A comprehensive study Enhancing the formability of flame-retardant magnesium alloy through Zn alloying Magnesium-reinforced sandwich structured composite membranes promote osteogenesis Understanding pyramidal slip-induced deformation bands and dynamic recrystallization in AZWX3100 magnesium alloy Unraveling electrochemical performance of magnesium vanadate-based nanostructures as advanced cathodes for rechargeable aqueous zinc-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1