Tissue Clutter Filtering Methods in Ultrasound Localization Microscopy Based on Complex-valued Networks and Knowledge Distillation.

Wenzhao Han, Wenjun Zhou, Lijie Huang, Jianwen Luo, Bo Peng
{"title":"Tissue Clutter Filtering Methods in Ultrasound Localization Microscopy Based on Complex-valued Networks and Knowledge Distillation.","authors":"Wenzhao Han, Wenjun Zhou, Lijie Huang, Jianwen Luo, Bo Peng","doi":"10.1109/TUFFC.2025.3544692","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound Localization Microscopy (ULM) is a blood flow imaging technique that utilizes micron-sized microbubbles (MBs) as contrast agents to achieve high-resolution microvessel reconstruction through precise localization and tracking of MBs. The accuracy of MB localization is critical for producing high-quality images, which makes tissue clutter filtering an essential step in ULM. Recent advances in deep learning have led to innovative methods for tissue clutter filtering, particularly those based on 3D convolution, which effectively capture the spatiotemporal features of MBs. These methods significantly improve upon traditional approaches by addressing issues such as lengthy inference time and limited flexibility. However, many deep learning techniques primarily focus on B-mode images and demonstrate lower efficiency. To overcome these limitations, this study proposes knowledge distillation for tissue clutter filtering to enhance filtering efficiency while maintaining performance. This study first develops a lightweight 2D complex-valued CNN (CL-UNet) as the teacher model, utilizing I/Q signal input. Subsequently, a 2D real-valued CNN (UNet-T) is developed as the student model, which uses envelope data as input. Feature-based knowledge distillation is applied to transfer knowledge from the teacher model to the student model (Guided UNet-T). All models are trained on simulated data and fine-tuned on in vivo data. The experimental results show that CL-UNet (I/Q, ours) demonstrates better filtering performance compared to the B-mode image-based approach on both simulated and in vivo data. Guided UNet-T outperforms both Singular Value Decomposition (SVD) and Random SVD (RSVD) in terms of both performance and speed, offering the best balance between filtering efficiency and effectiveness.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TUFFC.2025.3544692","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound Localization Microscopy (ULM) is a blood flow imaging technique that utilizes micron-sized microbubbles (MBs) as contrast agents to achieve high-resolution microvessel reconstruction through precise localization and tracking of MBs. The accuracy of MB localization is critical for producing high-quality images, which makes tissue clutter filtering an essential step in ULM. Recent advances in deep learning have led to innovative methods for tissue clutter filtering, particularly those based on 3D convolution, which effectively capture the spatiotemporal features of MBs. These methods significantly improve upon traditional approaches by addressing issues such as lengthy inference time and limited flexibility. However, many deep learning techniques primarily focus on B-mode images and demonstrate lower efficiency. To overcome these limitations, this study proposes knowledge distillation for tissue clutter filtering to enhance filtering efficiency while maintaining performance. This study first develops a lightweight 2D complex-valued CNN (CL-UNet) as the teacher model, utilizing I/Q signal input. Subsequently, a 2D real-valued CNN (UNet-T) is developed as the student model, which uses envelope data as input. Feature-based knowledge distillation is applied to transfer knowledge from the teacher model to the student model (Guided UNet-T). All models are trained on simulated data and fine-tuned on in vivo data. The experimental results show that CL-UNet (I/Q, ours) demonstrates better filtering performance compared to the B-mode image-based approach on both simulated and in vivo data. Guided UNet-T outperforms both Singular Value Decomposition (SVD) and Random SVD (RSVD) in terms of both performance and speed, offering the best balance between filtering efficiency and effectiveness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
期刊最新文献
Thin Film Piezoelectric Acoustic Emission Sensor with High Sensitivity Up To 650∘C. Temperature-stable high-power properties of (K,Na)NbO3-based piezoelectric ceramics. Super-Resolution Ultrasound: From Data Acquisition and Motion Correction to Localization, Tracking, and Evaluation. Tissue Clutter Filtering Methods in Ultrasound Localization Microscopy Based on Complex-valued Networks and Knowledge Distillation. Study on Loss mechanisms in SAW Resonators Using 42-LT Thin Plate by Full-3D FEM with Hierarchical Cascading Technique.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1