Thin Film Piezoelectric Acoustic Emission Sensor with High Sensitivity Up To 650∘C.

Talha Masood Khan, John T Sabino, Chenxi Xu, Muhammad Shahzeb Khan, Edward Lowenhar, Matthew Daly, Didem Ozevin
{"title":"Thin Film Piezoelectric Acoustic Emission Sensor with High Sensitivity Up To 650<sup>∘C</sup>.","authors":"Talha Masood Khan, John T Sabino, Chenxi Xu, Muhammad Shahzeb Khan, Edward Lowenhar, Matthew Daly, Didem Ozevin","doi":"10.1109/TUFFC.2025.3548930","DOIUrl":null,"url":null,"abstract":"<p><p>This paper reports a high-temperature acoustic emission (AE) sensor enabling couplant-free and waveguide-free attachments on structures operating up to 650◦C. The microfabricated sensor is constructed using silicon carbide as the substrate and aluminum nitride (AlN) as the piezoelectric film. The piezoelectric coefficient (d33) of AlN is measured using piezoresponse force microscopy as 3.62 pm/V. The sensor exhibits an impedance response of ∼1kΩ in the 100 kHz to 300 kHz frequency range, which is below the input impedance of conventional AE systems, causing a slight reduction in amplitude. Following the sensitivity and impedance characterizations, the sensor is tested inside a furnace at temperatures ranging from room temperature up to 650◦C. Pencil lead break and ball drop tests are used to simulate AE sources. The sensor is dry-coupled to the test surface using high-temperature wires and a stainless-steel fixture. The sensor sensitivity decreases slightly with increasing temperature, with a maximum reduction of 6 dB at 650◦C. The sensor is evaluated for detecting creep damage in 316L stainless steel and demonstrated performance comparable to conventional sensors attached with waveguides. Compared with conventional bulk AE sensors, the key characteristics of this AlN-based thin-film AE sensor are its high-temperature functionality and couplant-free attachment, enabling direct placement near critical systems under elevated temperatures. This positioning mitigates the influences of long wave paths introduced by waveguides, enhancing the sensor's effectiveness in detecting the initiation and progression of damage. The developed sensor leverages the advantages of microfabrication, offering benefits such as mass production, low cost, and a compact footprint.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TUFFC.2025.3548930","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports a high-temperature acoustic emission (AE) sensor enabling couplant-free and waveguide-free attachments on structures operating up to 650◦C. The microfabricated sensor is constructed using silicon carbide as the substrate and aluminum nitride (AlN) as the piezoelectric film. The piezoelectric coefficient (d33) of AlN is measured using piezoresponse force microscopy as 3.62 pm/V. The sensor exhibits an impedance response of ∼1kΩ in the 100 kHz to 300 kHz frequency range, which is below the input impedance of conventional AE systems, causing a slight reduction in amplitude. Following the sensitivity and impedance characterizations, the sensor is tested inside a furnace at temperatures ranging from room temperature up to 650◦C. Pencil lead break and ball drop tests are used to simulate AE sources. The sensor is dry-coupled to the test surface using high-temperature wires and a stainless-steel fixture. The sensor sensitivity decreases slightly with increasing temperature, with a maximum reduction of 6 dB at 650◦C. The sensor is evaluated for detecting creep damage in 316L stainless steel and demonstrated performance comparable to conventional sensors attached with waveguides. Compared with conventional bulk AE sensors, the key characteristics of this AlN-based thin-film AE sensor are its high-temperature functionality and couplant-free attachment, enabling direct placement near critical systems under elevated temperatures. This positioning mitigates the influences of long wave paths introduced by waveguides, enhancing the sensor's effectiveness in detecting the initiation and progression of damage. The developed sensor leverages the advantages of microfabrication, offering benefits such as mass production, low cost, and a compact footprint.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
期刊最新文献
Thin Film Piezoelectric Acoustic Emission Sensor with High Sensitivity Up To 650∘C. Temperature-stable high-power properties of (K,Na)NbO3-based piezoelectric ceramics. Super-Resolution Ultrasound: From Data Acquisition and Motion Correction to Localization, Tracking, and Evaluation. Tissue Clutter Filtering Methods in Ultrasound Localization Microscopy Based on Complex-valued Networks and Knowledge Distillation. Study on Loss mechanisms in SAW Resonators Using 42-LT Thin Plate by Full-3D FEM with Hierarchical Cascading Technique.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1