Wyatt C. Million, Christian R. Voolstra, Gabriela Perna, Giulia Puntin, Katherine Rowe, Maren Ziegler
{"title":"Resolving Symbiodiniaceae Diversity Across Coral Microhabitats and Reef Niches","authors":"Wyatt C. Million, Christian R. Voolstra, Gabriela Perna, Giulia Puntin, Katherine Rowe, Maren Ziegler","doi":"10.1111/1462-2920.70065","DOIUrl":null,"url":null,"abstract":"<p>Dinoflagellates of the family Symbiodiniaceae are important symbionts of diverse marine animals and they also occupy different environmental niches on coral reefs. The link between diversity at ecosystem-scale to microhabitats of Symbiodiniaceae within the coral holobiont is largely unknown. Using ITS2-amplicon sequencing, we compared Symbiodiniaceae communities across four environments (seawater, near-reef vs. distant sediments and turf algae) and two coral microhabitats (tissue, mucus) on a coral reef in the Red Sea. We found that coral and environmental habitats were both dominated by the genera <i>Symbiodinium</i>, <i>Cladocopium</i> and <i>Durusdinium</i>, but environmental habitats additionally harboured <i>Fugacium</i>, <i>Gerakladium</i> and <i>Halluxium</i>. Each environmental habitat harboured a distinct Symbiodiniaceae community. Nonetheless, 17 ITS2 sequences were shared among coral and environmental habitats and were also part of nearly half of the ITS2 type profiles in coral-based communities. Tissues and mucus of 49 coral colonies from 17 genera had largely identical Symbiodiniaceae communities. Together with the large difference between environmental Symbiodiniaceae communities and those in the coral tissue and mucus, our results indicate a clear barrier between host-associated and environmental Symbiodiniaceae communities marked by only few shared complete type profiles. Monitoring coral colonies after mucus sampling confirmed its suitability for long-term monitoring of coral-associated Symbiodiniaceae communities.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70065","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70065","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dinoflagellates of the family Symbiodiniaceae are important symbionts of diverse marine animals and they also occupy different environmental niches on coral reefs. The link between diversity at ecosystem-scale to microhabitats of Symbiodiniaceae within the coral holobiont is largely unknown. Using ITS2-amplicon sequencing, we compared Symbiodiniaceae communities across four environments (seawater, near-reef vs. distant sediments and turf algae) and two coral microhabitats (tissue, mucus) on a coral reef in the Red Sea. We found that coral and environmental habitats were both dominated by the genera Symbiodinium, Cladocopium and Durusdinium, but environmental habitats additionally harboured Fugacium, Gerakladium and Halluxium. Each environmental habitat harboured a distinct Symbiodiniaceae community. Nonetheless, 17 ITS2 sequences were shared among coral and environmental habitats and were also part of nearly half of the ITS2 type profiles in coral-based communities. Tissues and mucus of 49 coral colonies from 17 genera had largely identical Symbiodiniaceae communities. Together with the large difference between environmental Symbiodiniaceae communities and those in the coral tissue and mucus, our results indicate a clear barrier between host-associated and environmental Symbiodiniaceae communities marked by only few shared complete type profiles. Monitoring coral colonies after mucus sampling confirmed its suitability for long-term monitoring of coral-associated Symbiodiniaceae communities.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens