The Photoheterotroph Dokdonia sp. MED134 Modulates the Expression of Resource Acquisition and Anaplerotic Carbon Fixation Pathways in Response to Temperature
José M. González, Semidán Robaina-Estévez, Ana María Cabello, Antonio S. Palacio, Ruairí Gallagher, Ángel López-Urrutia, Laura Alonso-Sáez
{"title":"The Photoheterotroph Dokdonia sp. MED134 Modulates the Expression of Resource Acquisition and Anaplerotic Carbon Fixation Pathways in Response to Temperature","authors":"José M. González, Semidán Robaina-Estévez, Ana María Cabello, Antonio S. Palacio, Ruairí Gallagher, Ángel López-Urrutia, Laura Alonso-Sáez","doi":"10.1111/1462-2920.70071","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Temperature has an overriding impact on microbial physiology, but the molecular basis of thermal acclimation in many ecologically relevant marine bacterial taxa remains unexplored. We used quantitative transcriptomics to analyse the transcriptional reprogramming of a proteorhodopsin-based photoheterotroph, <i>Dokdonia</i> sp. MED134, during thermal acclimation from 10°C to 34°C. Temperature significantly impacted the expression of most MED134 genes (84%). Marker genes of the general stress response were induced towards cold temperature (10°C). Conversely, highly expressed genes associated with DNA replication and resource acquisition, like TonB-dependent transporters and gliding motility genes, were upregulated towards warm temperatures along this thermal range, when growth rates were fast. The mRNA transcript abundance of most genes related to the TCA cycle was not differentially expressed by temperature. By contrast, the expression of genes associated with anaplerotic carbon fixation was significantly enhanced at the optimum growth temperature (25°C). The expression of the proteorhodopsin was minimum at 10°C, and its regulation by light was impaired at 34°C, suggesting regulatory imbalances in this key phototrophic gene under supra-optimal warm conditions. Our findings highlight potential implications of growth temperature for regulating mechanisms of nutrient and energy acquisition, as well as the intracellular carbon flux in globally abundant marine photoheterotrophs.</p>\n </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70071","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature has an overriding impact on microbial physiology, but the molecular basis of thermal acclimation in many ecologically relevant marine bacterial taxa remains unexplored. We used quantitative transcriptomics to analyse the transcriptional reprogramming of a proteorhodopsin-based photoheterotroph, Dokdonia sp. MED134, during thermal acclimation from 10°C to 34°C. Temperature significantly impacted the expression of most MED134 genes (84%). Marker genes of the general stress response were induced towards cold temperature (10°C). Conversely, highly expressed genes associated with DNA replication and resource acquisition, like TonB-dependent transporters and gliding motility genes, were upregulated towards warm temperatures along this thermal range, when growth rates were fast. The mRNA transcript abundance of most genes related to the TCA cycle was not differentially expressed by temperature. By contrast, the expression of genes associated with anaplerotic carbon fixation was significantly enhanced at the optimum growth temperature (25°C). The expression of the proteorhodopsin was minimum at 10°C, and its regulation by light was impaired at 34°C, suggesting regulatory imbalances in this key phototrophic gene under supra-optimal warm conditions. Our findings highlight potential implications of growth temperature for regulating mechanisms of nutrient and energy acquisition, as well as the intracellular carbon flux in globally abundant marine photoheterotrophs.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens