{"title":"Robustness of the Au/Ni ohmic contact on p-type GaN through microelectronic manufacturing processes","authors":"Quentin Paoli , Frédéric Cayrel , Zihao Lyu , Laurent Barreau , Daniel Alquier","doi":"10.1016/j.mssp.2025.109429","DOIUrl":null,"url":null,"abstract":"<div><div>GaN is an interesting material for power application but requires increasing process reliability. In this work, Au/Ni ohmic contacts on p-type GaN are studied over a complete process flow representative of a real die fabrication. The impact of passivation and refill layers on the contact quality are investigated. First results reveal that Si based passivation degrades the ohmic behavior whereas Parylene passivation allows to keep the contact integrity. The addition of Al refill layer has only a slight impact on the best I-V characteristics. After a complete stack process, composed of two passivation and two refill layers, only fully Parylene passivated samples lead to an ohmic contact with a quasi-linear I-V response and a corresponding average SCR value of 0.96–2.79 x 10-3 Ω cm<sup>2</sup>.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"192 ","pages":"Article 109429"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125001660","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
GaN is an interesting material for power application but requires increasing process reliability. In this work, Au/Ni ohmic contacts on p-type GaN are studied over a complete process flow representative of a real die fabrication. The impact of passivation and refill layers on the contact quality are investigated. First results reveal that Si based passivation degrades the ohmic behavior whereas Parylene passivation allows to keep the contact integrity. The addition of Al refill layer has only a slight impact on the best I-V characteristics. After a complete stack process, composed of two passivation and two refill layers, only fully Parylene passivated samples lead to an ohmic contact with a quasi-linear I-V response and a corresponding average SCR value of 0.96–2.79 x 10-3 Ω cm2.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.