Electron microbeam investigations of the spent ash from the pilot-scale acid extraction of rare earth elements from a beneficiated Kentucky fly ash

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS International Journal of Coal Geology Pub Date : 2025-03-02 DOI:10.1016/j.coal.2025.104738
Debora Berti , John G. Groppo , Prakash Joshi , Dorin V. Preda , David P. Gamliel , Todd Beers , Michael Schrock , Shelley D. Hopps , Tonya D. Morgan , Bernd Zechmann , James C. Hower
{"title":"Electron microbeam investigations of the spent ash from the pilot-scale acid extraction of rare earth elements from a beneficiated Kentucky fly ash","authors":"Debora Berti ,&nbsp;John G. Groppo ,&nbsp;Prakash Joshi ,&nbsp;Dorin V. Preda ,&nbsp;David P. Gamliel ,&nbsp;Todd Beers ,&nbsp;Michael Schrock ,&nbsp;Shelley D. Hopps ,&nbsp;Tonya D. Morgan ,&nbsp;Bernd Zechmann ,&nbsp;James C. Hower","doi":"10.1016/j.coal.2025.104738","DOIUrl":null,"url":null,"abstract":"<div><div>Fly ash derived from the combustion of an eastern Kentucky high volatile bituminous coal blend was, as discussed in previous studies, beneficiated to yield a − 75-μm product with a reduction in the carbon and spinels. The beneficiated fly ash was reacted with a strong acid in a pilot-scale unit to extract rare earth elements (REE) and other major and minor elements. In this study, polished, epoxy-bound pellets of the beneficiated and acid-extracted ashes were examined via scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Selected slices of the polished section were extracted using a focused ion beam (FIB) technology and further examined via transmission electron microscopy (TEM) and EDS. The bulk chemistry of the original feed ash (not studied by microbeam methods), the beneficiated ash, and the acid-extracted ash exhibit similar Upper Continental Crust-normalized REE patterns. The bulk chemistry indicates that the concentrations of the major oxides (aside from SiO<sub>2</sub>), REE, V, Cr, Mn, Ni, As, Rb, Sr, Zr, Ba, and Pb are less in the processed ash compared to the beneficiated ash. The fly ashes have H-type distributions (La<sub><em>N</em></sub> &lt; Lu<sub><em>N</em></sub>) with a strong M-type (medium type: La<sub>N</sub>/Sm<sub>N</sub> &lt; 1, Gd<sub>N</sub>/Lu<sub>N</sub> &gt; 1) contribution. Among the REE and Y, SEM-EDS and TEM-EDS showed the presence of zircon with Y (and Ce, Nd, and Gd, perhaps from an adjacent monazite); xenotime; a Dy-rich xenotime-structure mineral: and monazite with light REE (La, Ce, Pr, Nd, and Sm), Gd, Dy, Er, and Th. Glassy Al-Si-rich fly ash spheres showed the presence of Ce, Nd, Sm, and Dy but no discernable minerals at the scale of the SEM view. Certain spheres showed 2- to 4-μm amorphous rims surrounding nano-crystalline cores. As with the depletion of elements in the bulk fly ash, the amorphous rims showed a relative increase in Si and a depletion or apparent elimination of other elements, including the REE. It is possible that the apparent absence of 2- to 4-μm particles may mean that these particles were totally or largely dissolved by the acid or as a consequence of multiple wash-filtration cycles to remove leachate from the spent ash. Processing of a combination of a finer size than processed in this pilot-scale investigation and/or more fractured particles, perhaps via a pre-processing step, would permit a greater penetration of the acid into the interior of the fly ash particles, leading to a greater recovery of REE.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"303 ","pages":"Article 104738"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Geology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166516225000552","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Fly ash derived from the combustion of an eastern Kentucky high volatile bituminous coal blend was, as discussed in previous studies, beneficiated to yield a − 75-μm product with a reduction in the carbon and spinels. The beneficiated fly ash was reacted with a strong acid in a pilot-scale unit to extract rare earth elements (REE) and other major and minor elements. In this study, polished, epoxy-bound pellets of the beneficiated and acid-extracted ashes were examined via scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Selected slices of the polished section were extracted using a focused ion beam (FIB) technology and further examined via transmission electron microscopy (TEM) and EDS. The bulk chemistry of the original feed ash (not studied by microbeam methods), the beneficiated ash, and the acid-extracted ash exhibit similar Upper Continental Crust-normalized REE patterns. The bulk chemistry indicates that the concentrations of the major oxides (aside from SiO2), REE, V, Cr, Mn, Ni, As, Rb, Sr, Zr, Ba, and Pb are less in the processed ash compared to the beneficiated ash. The fly ashes have H-type distributions (LaN < LuN) with a strong M-type (medium type: LaN/SmN < 1, GdN/LuN > 1) contribution. Among the REE and Y, SEM-EDS and TEM-EDS showed the presence of zircon with Y (and Ce, Nd, and Gd, perhaps from an adjacent monazite); xenotime; a Dy-rich xenotime-structure mineral: and monazite with light REE (La, Ce, Pr, Nd, and Sm), Gd, Dy, Er, and Th. Glassy Al-Si-rich fly ash spheres showed the presence of Ce, Nd, Sm, and Dy but no discernable minerals at the scale of the SEM view. Certain spheres showed 2- to 4-μm amorphous rims surrounding nano-crystalline cores. As with the depletion of elements in the bulk fly ash, the amorphous rims showed a relative increase in Si and a depletion or apparent elimination of other elements, including the REE. It is possible that the apparent absence of 2- to 4-μm particles may mean that these particles were totally or largely dissolved by the acid or as a consequence of multiple wash-filtration cycles to remove leachate from the spent ash. Processing of a combination of a finer size than processed in this pilot-scale investigation and/or more fractured particles, perhaps via a pre-processing step, would permit a greater penetration of the acid into the interior of the fly ash particles, leading to a greater recovery of REE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Coal Geology
International Journal of Coal Geology 工程技术-地球科学综合
CiteScore
11.00
自引率
14.30%
发文量
145
审稿时长
38 days
期刊介绍: The International Journal of Coal Geology deals with fundamental and applied aspects of the geology and petrology of coal, oil/gas source rocks and shale gas resources. The journal aims to advance the exploration, exploitation and utilization of these resources, and to stimulate environmental awareness as well as advancement of engineering for effective resource management.
期刊最新文献
Electron microbeam investigations of the spent ash from the pilot-scale acid extraction of rare earth elements from a beneficiated Kentucky fly ash Editorial Board Reassessment of the Pennsylvanian bio- and chronostratigraphy of the Saar-Lorraine Basin using high-precision UPb ages of volcanic ashes Extensive accumulation of organic matter in the Late Permian Dalong Formation, Western Hubei Trough, Southern China Evolution of pore structure in the Upper Cretaceous Second White Speckled Shale during thermal maturation: Insights from artificial and naturally matured samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1