Shakhawat Hossain , Gary J. Hampson , Carl Jacquemyn , Matthew D. Jackson , Dmytro Petrovskyy , Sebastian Geiger , Julio D. Machado Silva , Sicilia Judice , Fazilatur Rahman , M. Costa Sousa
{"title":"Effective permeability of fluvial lithofacies in the Bunter Sandstone Formation, UK","authors":"Shakhawat Hossain , Gary J. Hampson , Carl Jacquemyn , Matthew D. Jackson , Dmytro Petrovskyy , Sebastian Geiger , Julio D. Machado Silva , Sicilia Judice , Fazilatur Rahman , M. Costa Sousa","doi":"10.1016/j.advwatres.2025.104936","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding effective permeability is crucial for predicting fluid migration and trapping in subsurface reservoirs. The Bunter Sandstone of northwestern Europe hosts major groundwater and geothermal resources and is targeted for CO<sub>2</sub> storage projects. Here the effective permeability of fluvial facies within the Bunter Sandstone Formation was assessed using facies-scale models. Twelve lithofacies were modeled based on core and outcrop observations of their geometries and dimensions. Permeability values from minipermeameter measurements were assigned to low- and high-permeability lithologies in each facies. The dimensions of a Representative Elementary Volume (REV) in depositional dip, depositional strike and vertical directions were determined by extracting sub-volumes from the models at different scales, calculating values of effective permeability for each sub-volume, and identifying the sub-volume at which the values of effective permeability stabilise as the REV. The REV dimensions vary with facies type and flow direction, but are typically of order tens of centimetres to metres in size, significantly larger than a typical core plug. Having identified the REV, we analyze the effective permeabilities of the different facies types. Normalized values of effective permeabilities in depositional dip, strike and vertical directions (<em>k<sub>d</sub>, k<sub>s</sub>, k<sub>v</sub></em>), relative to the permeability of low- and high-permeability lithologies in each facies, display a positive linear correlation with the proportion of high-permeability lithology (clay-poor sandstone) for all facies. Therefore, the proportion of clay-poor sandstone, as measured in core data, can be used to predict facies-scale effective permeability in the Bunter Sandstone Formation, as well as in analogous fluvial deposits globally.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"199 ","pages":"Article 104936"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825000508","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding effective permeability is crucial for predicting fluid migration and trapping in subsurface reservoirs. The Bunter Sandstone of northwestern Europe hosts major groundwater and geothermal resources and is targeted for CO2 storage projects. Here the effective permeability of fluvial facies within the Bunter Sandstone Formation was assessed using facies-scale models. Twelve lithofacies were modeled based on core and outcrop observations of their geometries and dimensions. Permeability values from minipermeameter measurements were assigned to low- and high-permeability lithologies in each facies. The dimensions of a Representative Elementary Volume (REV) in depositional dip, depositional strike and vertical directions were determined by extracting sub-volumes from the models at different scales, calculating values of effective permeability for each sub-volume, and identifying the sub-volume at which the values of effective permeability stabilise as the REV. The REV dimensions vary with facies type and flow direction, but are typically of order tens of centimetres to metres in size, significantly larger than a typical core plug. Having identified the REV, we analyze the effective permeabilities of the different facies types. Normalized values of effective permeabilities in depositional dip, strike and vertical directions (kd, ks, kv), relative to the permeability of low- and high-permeability lithologies in each facies, display a positive linear correlation with the proportion of high-permeability lithology (clay-poor sandstone) for all facies. Therefore, the proportion of clay-poor sandstone, as measured in core data, can be used to predict facies-scale effective permeability in the Bunter Sandstone Formation, as well as in analogous fluvial deposits globally.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes