Effective permeability of fluvial lithofacies in the Bunter Sandstone Formation, UK

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES Advances in Water Resources Pub Date : 2025-02-25 DOI:10.1016/j.advwatres.2025.104936
Shakhawat Hossain , Gary J. Hampson , Carl Jacquemyn , Matthew D. Jackson , Dmytro Petrovskyy , Sebastian Geiger , Julio D. Machado Silva , Sicilia Judice , Fazilatur Rahman , M. Costa Sousa
{"title":"Effective permeability of fluvial lithofacies in the Bunter Sandstone Formation, UK","authors":"Shakhawat Hossain ,&nbsp;Gary J. Hampson ,&nbsp;Carl Jacquemyn ,&nbsp;Matthew D. Jackson ,&nbsp;Dmytro Petrovskyy ,&nbsp;Sebastian Geiger ,&nbsp;Julio D. Machado Silva ,&nbsp;Sicilia Judice ,&nbsp;Fazilatur Rahman ,&nbsp;M. Costa Sousa","doi":"10.1016/j.advwatres.2025.104936","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding effective permeability is crucial for predicting fluid migration and trapping in subsurface reservoirs. The Bunter Sandstone of northwestern Europe hosts major groundwater and geothermal resources and is targeted for CO<sub>2</sub> storage projects. Here the effective permeability of fluvial facies within the Bunter Sandstone Formation was assessed using facies-scale models. Twelve lithofacies were modeled based on core and outcrop observations of their geometries and dimensions. Permeability values from minipermeameter measurements were assigned to low- and high-permeability lithologies in each facies. The dimensions of a Representative Elementary Volume (REV) in depositional dip, depositional strike and vertical directions were determined by extracting sub-volumes from the models at different scales, calculating values of effective permeability for each sub-volume, and identifying the sub-volume at which the values of effective permeability stabilise as the REV. The REV dimensions vary with facies type and flow direction, but are typically of order tens of centimetres to metres in size, significantly larger than a typical core plug. Having identified the REV, we analyze the effective permeabilities of the different facies types. Normalized values of effective permeabilities in depositional dip, strike and vertical directions (<em>k<sub>d</sub>, k<sub>s</sub>, k<sub>v</sub></em>), relative to the permeability of low- and high-permeability lithologies in each facies, display a positive linear correlation with the proportion of high-permeability lithology (clay-poor sandstone) for all facies. Therefore, the proportion of clay-poor sandstone, as measured in core data, can be used to predict facies-scale effective permeability in the Bunter Sandstone Formation, as well as in analogous fluvial deposits globally.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"199 ","pages":"Article 104936"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825000508","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding effective permeability is crucial for predicting fluid migration and trapping in subsurface reservoirs. The Bunter Sandstone of northwestern Europe hosts major groundwater and geothermal resources and is targeted for CO2 storage projects. Here the effective permeability of fluvial facies within the Bunter Sandstone Formation was assessed using facies-scale models. Twelve lithofacies were modeled based on core and outcrop observations of their geometries and dimensions. Permeability values from minipermeameter measurements were assigned to low- and high-permeability lithologies in each facies. The dimensions of a Representative Elementary Volume (REV) in depositional dip, depositional strike and vertical directions were determined by extracting sub-volumes from the models at different scales, calculating values of effective permeability for each sub-volume, and identifying the sub-volume at which the values of effective permeability stabilise as the REV. The REV dimensions vary with facies type and flow direction, but are typically of order tens of centimetres to metres in size, significantly larger than a typical core plug. Having identified the REV, we analyze the effective permeabilities of the different facies types. Normalized values of effective permeabilities in depositional dip, strike and vertical directions (kd, ks, kv), relative to the permeability of low- and high-permeability lithologies in each facies, display a positive linear correlation with the proportion of high-permeability lithology (clay-poor sandstone) for all facies. Therefore, the proportion of clay-poor sandstone, as measured in core data, can be used to predict facies-scale effective permeability in the Bunter Sandstone Formation, as well as in analogous fluvial deposits globally.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
期刊最新文献
Editorial Board Pore-scale relative permeability and saturation analysis under wide-ranging injection velocity and wettability during primary CO2 injection for geological carbon sequestration A phase-field approach to model evaporation from porous media: Modeling and upscaling Effective permeability of fluvial lithofacies in the Bunter Sandstone Formation, UK New insights into the nonmonotonic wetting effect: The principle of minimum operating power during two-phase displacement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1