Online ensemble learning-based anomaly detection for IoT systems

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2025-03-03 DOI:10.1016/j.asoc.2025.112931
Yafeng Wu, Lan Liu, Yongjie Yu, Guiming Chen, Junhan Hu
{"title":"Online ensemble learning-based anomaly detection for IoT systems","authors":"Yafeng Wu,&nbsp;Lan Liu,&nbsp;Yongjie Yu,&nbsp;Guiming Chen,&nbsp;Junhan Hu","doi":"10.1016/j.asoc.2025.112931","DOIUrl":null,"url":null,"abstract":"<div><div>In the modern era of digital transformation, the evolution of fifth-generation (5G) wireless networks has played a pivotal role in revolutionizing communication technology and accelerating the growth of smart technology applications. As an integral element of smart technology, the Internet of Things (IoT) grapples with the problem of limited hardware performance. Cloud and fog computing-based IoT systems offer an effective solution but often encounter concept drift issues in real-time data processing due to the dynamic and imbalanced nature of IoT environments, leading to performance degradation. In this study, we propose a novel framework for drift-adaptive ensemble learning called the Adaptive Exponentially Weighted Average Ensemble (AEWAE), which consists of three stages: IoT data preprocessing, base model learning, and online ensembling. It integrates four advanced online learning methods within an ensemble approach. The crucial parameter of the AEWAE method is fine-tuned using the Particle Swarm Optimization (PSO) technique. Experimental results on four public datasets demonstrate that AEWAE-based anomaly detection effectively detects concept drift and identifies anomalies in imbalanced IoT data streams, outperforming other baseline methods in terms of accuracy, F1 score, false alarm rate (FAR), and latency.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"173 ","pages":"Article 112931"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156849462500242X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the modern era of digital transformation, the evolution of fifth-generation (5G) wireless networks has played a pivotal role in revolutionizing communication technology and accelerating the growth of smart technology applications. As an integral element of smart technology, the Internet of Things (IoT) grapples with the problem of limited hardware performance. Cloud and fog computing-based IoT systems offer an effective solution but often encounter concept drift issues in real-time data processing due to the dynamic and imbalanced nature of IoT environments, leading to performance degradation. In this study, we propose a novel framework for drift-adaptive ensemble learning called the Adaptive Exponentially Weighted Average Ensemble (AEWAE), which consists of three stages: IoT data preprocessing, base model learning, and online ensembling. It integrates four advanced online learning methods within an ensemble approach. The crucial parameter of the AEWAE method is fine-tuned using the Particle Swarm Optimization (PSO) technique. Experimental results on four public datasets demonstrate that AEWAE-based anomaly detection effectively detects concept drift and identifies anomalies in imbalanced IoT data streams, outperforming other baseline methods in terms of accuracy, F1 score, false alarm rate (FAR), and latency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
A random searching algorithm for efficiently solving the connectivity-oriented robust optimization problem on large-scale networked systems Automatic optimization for generating adversarial malware based on prioritized evolutionary computing Online ensemble learning-based anomaly detection for IoT systems Multi-objective evolutionary algorithm with two balancing mechanisms for heterogeneous UAV swarm path planning Dual residual learning of frequency fingerprints in detecting synthesized biomedical imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1