{"title":"Real-time air quality prediction using traffic videos and machine learning","authors":"Laura Deveer , Laura Minet","doi":"10.1016/j.trd.2025.104688","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning techniques are yielding better results than traditional statistical techniques to estimate traffic-related air pollutant (TRAP) concentrations. However, required data inputs, particularly complex traffic data, are costly and rarely collected in real-time. This study leverages real-time object detection techniques to accurately predict TRAP concentrations by extracting traffic variables solely from videos. Fine particulate matter (PM<sub>2.5</sub>), nitrogen dioxide (NO<sub>2</sub>) and ozone (O<sub>3</sub>) concentrations are recorded by low-cost sensors, with traffic data extracted using object detection and tracking algorithms. Extreme Gradient Boosting, random forest, and multilinear regression models are employed to predict concentrations across different predictor combinations. Our optimal models accurately predict PM<sub>2.5</sub>, NO<sub>2,</sub> and O<sub>3</sub> concentrations with R<sup>2</sup> values of 0.94, 0.95, and 0.92, respectively. This study demonstrates a cost-effective approach with high accuracies in predicting real-time TRAP using a low-cost and low-maintenance tool: a video camera. Cities could similarly track TRAP using traffic camera infrastructure without additional sensor deployment.</div></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":"142 ","pages":"Article 104688"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920925000987","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning techniques are yielding better results than traditional statistical techniques to estimate traffic-related air pollutant (TRAP) concentrations. However, required data inputs, particularly complex traffic data, are costly and rarely collected in real-time. This study leverages real-time object detection techniques to accurately predict TRAP concentrations by extracting traffic variables solely from videos. Fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) concentrations are recorded by low-cost sensors, with traffic data extracted using object detection and tracking algorithms. Extreme Gradient Boosting, random forest, and multilinear regression models are employed to predict concentrations across different predictor combinations. Our optimal models accurately predict PM2.5, NO2, and O3 concentrations with R2 values of 0.94, 0.95, and 0.92, respectively. This study demonstrates a cost-effective approach with high accuracies in predicting real-time TRAP using a low-cost and low-maintenance tool: a video camera. Cities could similarly track TRAP using traffic camera infrastructure without additional sensor deployment.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.