Chloride channels and mast cell function: pioneering new frontiers in IBD therapy.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2025-03-04 DOI:10.1007/s11010-025-05243-w
Ahmed M Aljameeli, Bader Alsuwayt, Deepak Bharati, Vaishnavi Gohri, Popat Mohite, Sudarshan Singh, Vijay Chidrawar
{"title":"Chloride channels and mast cell function: pioneering new frontiers in IBD therapy.","authors":"Ahmed M Aljameeli, Bader Alsuwayt, Deepak Bharati, Vaishnavi Gohri, Popat Mohite, Sudarshan Singh, Vijay Chidrawar","doi":"10.1007/s11010-025-05243-w","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging evidence indicates that chloride channels (ClCs) significantly affect the pathogenesis of inflammatory bowel disease (IBD) through their regulatory roles in mast cell function and epithelial integrity. IBD, encompassing conditions such as Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract, where channels influence immune responses, fluid balance, and cellular signalling pathways essential for maintaining mucosal homeostasis. This review examines the specific roles of ClC in mast cells, focussing on the regulation of mast cell activation, degranulation, cytokine release, and immune cell recruitment in inflamed tissues. Key channels, including Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and ClC-2, are discussed in detail because of their involvement in maintaining intestinal epithelial barrier function, a critical factor disrupted in IBD. For example, CFTR facilitates chloride ion transport across epithelial cells, which is essential for mucosal hydration and maintenance of the intestinal barrier. Reduced CFTR function can compromise this barrier, permitting microbial antigens to penetrate the underlying tissues and triggering excessive immune responses. ClC-2, another chloride channel expressed in mast cells and epithelial cells, supports tight junction integrity, contributes to barrier function, and reduces intestinal permeability. Dysregulation of these channels is linked to altered mast cell activity and excessive release of pro-inflammatory mediators, exacerbating IBD symptoms, such as diarrhoea, abdominal pain, and tissue damage. Here, we review recent pharmacological strategies targeting ClC, including CFTR potentiators and ClC-2 activators, which show the potential to mitigate inflammatory responses. Additionally, experimental approaches for selective modulation of chloride channels in mast cells have been explored. Although targeting ClC offers promising therapeutic avenues, challenges remain in achieving specificity and minimizing side effects. This review highlights the therapeutic potential of Cl channel modulation in mast cells as a novel approach for IBD treatment, aiming to reduce inflammation and restore intestinal homeostasis in affected patients.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05243-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging evidence indicates that chloride channels (ClCs) significantly affect the pathogenesis of inflammatory bowel disease (IBD) through their regulatory roles in mast cell function and epithelial integrity. IBD, encompassing conditions such as Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract, where channels influence immune responses, fluid balance, and cellular signalling pathways essential for maintaining mucosal homeostasis. This review examines the specific roles of ClC in mast cells, focussing on the regulation of mast cell activation, degranulation, cytokine release, and immune cell recruitment in inflamed tissues. Key channels, including Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and ClC-2, are discussed in detail because of their involvement in maintaining intestinal epithelial barrier function, a critical factor disrupted in IBD. For example, CFTR facilitates chloride ion transport across epithelial cells, which is essential for mucosal hydration and maintenance of the intestinal barrier. Reduced CFTR function can compromise this barrier, permitting microbial antigens to penetrate the underlying tissues and triggering excessive immune responses. ClC-2, another chloride channel expressed in mast cells and epithelial cells, supports tight junction integrity, contributes to barrier function, and reduces intestinal permeability. Dysregulation of these channels is linked to altered mast cell activity and excessive release of pro-inflammatory mediators, exacerbating IBD symptoms, such as diarrhoea, abdominal pain, and tissue damage. Here, we review recent pharmacological strategies targeting ClC, including CFTR potentiators and ClC-2 activators, which show the potential to mitigate inflammatory responses. Additionally, experimental approaches for selective modulation of chloride channels in mast cells have been explored. Although targeting ClC offers promising therapeutic avenues, challenges remain in achieving specificity and minimizing side effects. This review highlights the therapeutic potential of Cl channel modulation in mast cells as a novel approach for IBD treatment, aiming to reduce inflammation and restore intestinal homeostasis in affected patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氯离子通道与肥大细胞功能:开辟 IBD 治疗新领域
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
Exploring the potential link between human papillomavirus infection and coronary artery disease: a review of shared pathways and mechanisms. Macrophage polarization-related gene SOAT1 is involved in inflammatory response and functional recovery after spinal cord injury. Chloride channels and mast cell function: pioneering new frontiers in IBD therapy. MiR-3202-DTL signaling axis impedes NSCLC malignancy via regulating the ubiquitination-proteasome degradation of p21. High glucose facilitates hepatocellular carcinoma cell proliferation and invasion via WTAP-mediated HK2 mRNA stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1