{"title":"MiR-3202-DTL signaling axis impedes NSCLC malignancy via regulating the ubiquitination-proteasome degradation of p21.","authors":"Hongjuan Guo, Qianbin Tang, Yujie Zhao, Jianghao Cheng, JunJie Wang, Dan Liu, Ruyu Yan, Dongjin Lv, Bingxiao Lu, Mingsong Wu, Hongtao Yu, Hao Leng, Bo Liu, Minxia Liu, Kecheng Zhou","doi":"10.1007/s11010-025-05239-6","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is a highly prevalent and aggressive malignancy, where early diagnosis and therapeutic intervention are pivotal for enhancing patient prognosis. Nonetheless, the lack of reliable biomarkers remains a substantial hurdle in clinical practice. In this study, we identified dysregulated microRNAs (miRNAs) in NSCLC, revealing a significant downregulation of miR-3202 and an upregulation of miR-3182. We demonstrate that both miR-3202 and miR-3182 play critical roles in modulating NSCLC cell proliferation and motility. Notably, we identify DTL as a direct target of miR-3202, with sustained expression of DTL reversing the effects of miR-3202 on cell growth and migration. Mechanistically, we show that miR-3202 regulates the ubiquitination and proteasomal degradation of p21 through DTL. These findings provide novel insights into the miRNA landscape in NSCLC and underscore the functional significance of the miR-3202-DTL-p21 axis. Our results position miR-3202 as a potential biomarker for NSCLC, thereby offering a foundation for the development of targeted diagnostic and therapeutic strategies.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05239-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-small cell lung cancer (NSCLC) is a highly prevalent and aggressive malignancy, where early diagnosis and therapeutic intervention are pivotal for enhancing patient prognosis. Nonetheless, the lack of reliable biomarkers remains a substantial hurdle in clinical practice. In this study, we identified dysregulated microRNAs (miRNAs) in NSCLC, revealing a significant downregulation of miR-3202 and an upregulation of miR-3182. We demonstrate that both miR-3202 and miR-3182 play critical roles in modulating NSCLC cell proliferation and motility. Notably, we identify DTL as a direct target of miR-3202, with sustained expression of DTL reversing the effects of miR-3202 on cell growth and migration. Mechanistically, we show that miR-3202 regulates the ubiquitination and proteasomal degradation of p21 through DTL. These findings provide novel insights into the miRNA landscape in NSCLC and underscore the functional significance of the miR-3202-DTL-p21 axis. Our results position miR-3202 as a potential biomarker for NSCLC, thereby offering a foundation for the development of targeted diagnostic and therapeutic strategies.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.